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1 Specification

1.1 Discrete Structure Rewriting

To represent a state of our model in a fixed moment of time we use finite rela-
tional structures, i.e. labelled directed hypergraphs. A relational structure A =
(A, R1, . . . , Rk) is composed of a universe A and a number of relations R1, . . . , Rk. We
denote the arity of Ri by ri, so Ri ⊆ Ari . The signature of A is the set of symbols
{R1, . . . , Rk}.

The dynamics of the model, i.e. the way the structure can change, is described by
structure rewriting rules, a generalized form of term and graph rewriting. Extended
graph rewriting is recently viewed as the programming model of choice for complex
multi-agent systems, especially ones with real-valued components [1]. Moreover,
this form of rewriting is well suited for visual programming and helps to make the
systems understandable.

In the most basic setting, a rule L→s R consists of two finite relational structures
L and R over the same signature and a partial function s ∶ R → L specifying which
elements of L will be substituted by which elements of R.

Let A,B be two structures, τe a set of relations symbols to be matched exactly
and τh a set of relations to be matched only positively. In practice, we also al-
low some tuples in L to be optional; this is a shorthand for multiple rules with the
same right-hand side. Optional tuples can also appear in R if all elements in the
tuple have corresponding elements in L. In such case, the tuple is included in R

if and only if a corresponding optional tuple appeared in L. A function f ∶ A ↪ B

is a (τe, τh)-embedding if f is injective, for each Ri ∈ τe it holds that (a1, . . . , ari) ∈
RA

i ⇔ ( f (a1), . . . , f (ari)) ∈ RB
i , and for Rj ∈ τh it holds that (a1, . . . , arj) ∈ RA

j ⇒
( f (a1), . . . , f (arj)) ∈ RB

j . A (τe, τh)-match of the rule L →s R in another structure
A is an (τe, τh)-embedding σ ∶ L↪ A. We define the result of an application of L→s R

to A on the match σ as B = A[L →s R/σ], such that the universe of B is given by
(A ∖ σ(L))∪̇R, and the relations as follows. A tuple (b1, . . . , bri) is in the new relation
RB

i if and only if either it is in the relation in R already, (b1, . . . , bri) ∈ RR
i , or there

exists a tuple in the previous structure, (a1, . . . , ari) ∈ RA
i , such that for each i either

ai = bi or ai = σ(s(bi)), i.e. either the element was there before or it was matched and
bi is the replacement as specified by the rule. Moreover, if Ri ∈ τe then we require in
the second case that at least one bi was already in the original structure, i.e. bi = ai.
To understand this definition it is best to consider an example, and one is given in
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1 Specification

Rewriting Rule: a b
R ↝

a b b

a b
R ↝

Figure 1.1: Rewriting rule and its application to a structure.

Figure 1.1.

1.2 Continuous Evolution

To model continuous dynamics in our system, we supplement relational structures
with a number of labeling functions f1, . . . , fl, each fi ∶ A → R (A is the universe).1

Accordingly, each rewriting rule is extended by a system of ordinary differential
equations (ODEs) and a set of right-hand update equations. We use a standard form
of ODEs: f k

i,l = t( f 0
i,l , . . . , f k−1

i,l ), where fi are the above-mentioned functions, l can be

any element of the left-hand side structure and f k denotes the k-th derivative of f .
The term t(x) is constructed using standard arithmetic functions +,−, ⋅, /, natural
roots n

√
for n > 1 and rational numbers r ∈ Q in addition to the variables x and a

set of parameters p fixed for each rule. The set of right-hand side update equations
contains one equation of the form fi,r = t( fi,l) for each function fi and each r from
the right-hand side structure.

Let R = {(Li →si Ri,Di,Ti) ∣ i < n} be a set of rules extended with ODEs Di and
update equations Ti as described above. Given, for each rule in R, a match σi of the
rule in a structure A, the required parameters pi and a time bound ti, we define the
result of a simultaneous application of R to A, denoted A[R/{σi, ti}], as follows. We
assume that no two intersecting rules have identical time bounds.

First, the structure A evolves in a continuous way as given by the sum of all
equations Di. More precisely, let D be a system of differential equations where for
each a ∈ A there exists an equation defining f k

i,a if and only if there exists an equation

in some Dj for f k
i,l for some l with σj(l) = a. In such case, the term for f k

i,a is the sum
of all terms for such l, with each f m

i,l replaced by the appropriate f m
i,σj(l). Assuming

that all functions fi and all their derivatives are given at the beginning, there is a
unique solution for these variables which satisfies D and has all other, undefined

1In fact fi(a) is not in R; it is a function ε → (x, x + δ), δ < ε.
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1 Specification

derivatives set by the starting condition from A. This solution defines the value of
fi,a(t) for each a ∈ A at any time moment t.

Let t0 = mini<n ti be the lowest chosen time bound and let i0, . . . , ik be all rules
with this bound, i.e. each tim = t0. We apply each of these rules independently1

to the structure A at time t0. Formally, the relational part of A[R/{σi, ti}] is equal
to A[Li0 →si0

Ri0/σi0]⋯[Lik →sik
Rik/σik] and the function values fi(a) are defined as

follows. If the element a was not changed, a ∈ A, then we keep the function value
from the solution of D, i.e. fi(a) = fi,a(t0). In the other case a was on the right-hand
side of some rule, a ∈Rm. Let fi,a = t( f j,l) be the equation in Tm defining fi,a. The new
value of fi(a) is then computed by inserting the appropriate values for f j,l from the

solution of D into t( f j,l), i.e. fi(a) = t(yj,l) where each yj,l = f j,σm(l)(t0).
Example. Let us define a simple two-dimensional model of a cat chasing a mouse.

The structure we use, A = ({c, m}, C, M, x, y), has two elements c and m, unary re-
lations C = {c} and M = {m} used to identify which element is which and two real-
valued functions x and y. Both rewriting rules have only one element, both on the
left-hand side and on the right-hand side, and the element is in C for the cat rule
and in M for the mouse rule. The ODEs for both rules are of the form x′ = px, y′ = py,
where px, py are parameters. The update equations just keep the left-hand side val-
ues, xr = xl , yr = yl. In this setting, simultaneous application of the cat rule with
parameters pc

x, pc
y for time tc and the mouse rule with parameters pm

x , pm
y for time

tm will have the following effect: The cat will move with speed pc
x along the x-axis

and pc
y along the y-axis and the mouse analogously with pm

x and pm
y , both for time

t0 = min(tc, tm).

1.3 Logic and Constraints

The logic we use for specifying properties of states is an extension of monadic
second-order logic with real-valued terms and counting operators. The main mo-
tivation for the choice of such logic is compositionality: To evaluate a formula on
a large structure A which is composed in a regular way from substructures B and
C it is enough to evaluate certain formulas on B and C independently. Monadic
second-order logic is one of the most expressive logics with this property and allows
to define various useful patterns such as stars, connected components or acyclic
subgraphs. (Additional syntactic shorthands can be provided for useful patterns.)

In the syntax of our logic, we use first-order variables (x1, x2, . . .) ranging over
elements of the structure, second-order variables (X1, X2, . . .) ranging over sets of
elements, fixed-point second order relations (Ξ1, Ξ2, . . .) ranging over relations and
real-valued variables (α1, α2, . . .) ranging over R, and we distinguish boolean formu-
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1 Specification

las ϕ and real-valued terms ρ:

ϕ ∶= Ri(x1, . . . , xri) ∣ xi = xj ∣ xi ∈ Xj ∣ ρ <ε ρ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣¬ϕ ∣
∃xi ϕ ∣∀xi ϕ ∣∃Xi ϕ ∣∀Xi ϕ ∣∃αi ϕ ∣∀αi ϕ ∣ lfpΞi ϕ ∣gfpΞi ϕ

ρ ∶= αi ∣ fi(xj) ∣ ρ+̇ρ ∣ χ[ϕ] ∣ minαi ϕ ∣ ∑x∣ϕ ρ ∣ ∏x∣ϕ ρ.

Semantics of most of the above operators is defined in the well known way, e.g.
ρ + ρ is the sum and ρ ⋅ ρ the product of real-valued terms, and ∃Xϕ(X) means that
there exists a set of elements S such that ϕ(S) holds, and lfp X ϕ(X) is the least
fixed-point of the equation X = ϕ(X). Among less known operators, the term χ[ϕ]
denotes the characteristic function of ϕ, i.e. the real-valued term which is 1 for
all assignments for which ϕ holds and 0 for all other. To evaluate minαi ϕ we take
the minimal αi for which ϕ holds (we allow ±∞ as values of terms as well). The
terms ∑x∣ϕ ρ and ∏x∣ϕ ρ denote the sum and product of the values of ρ(x) for all
assignments of elements of the structure to x for which ϕ(x) holds. Note that both
these terms can have free variables, e.g. the set of free variables of ∑x∣ϕ ρ is the
union of free variables of ϕ and free variables of ρ, minus the set {x}. Observe also
the ε in <ε: the values f (a) are given with arbitrary small but non-zero error and
ρ1 <ε ρ2 holds only if the upper bound of ρ1 lies below the lower bound of ρ2.

The logic defined above is used in structure rewriting rules in two ways. First, it is
possible to define a new relation R(x) using a formula ϕ(x) with free variables con-
tained in x. Defined relations can be used on left-hand sides of structure rewriting
rules, but are not allowed on right-hand sides. The second way is to add constraints
to a rule. A rule L →s R can be constrained using three sentences (i.e. formulas
without free variables): ϕpre, ϕinv and ϕpost. In both ϕpre and ϕinv we allow addi-
tional constants l for each l ∈ L and in ϕpost special constants for each r ∈ R can be
used. A rule L →s R with such constraints can be applied on a match σ in A only
if the following holds: At the beginning, the formula ϕpre must hold in A with the
constants l interpreted as σ(l). Later, during the whole continuous evolution, the
formula ϕinv must hold in the structure A with continuous values changed as pre-
scribed by the solution of the system D (defined above). Finally, the formula ϕpost

must hold in the resulting structure after rewriting. During simultaneous execution
of a few rules with constraints and with given time bounds ti, one of the invariants
ϕinv may cease to hold. In such case, the rule is applied at that moment of time,
even before t0 = min ti is reached — but of course only if ϕpost holds afterwards. If
ϕpost does not hold, the rule is ignored and time goes on for the remaining rules.

1.4 Structure Rewriting Games

As you could judge from the cat and mouse example, one can describe a structure
rewriting game simply by providing a set of allowed rules for each player. Still, in
many cases it is necessary to have more control over the flow of the game and to
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1 Specification

Game Graph:

↝ P ↝ Q

Starting Structure:

C

C

C

C

C

C

R R

R R

R R

Figure 1.2: Tic-tac-toe as a structure rewriting game.

model probabilistic events. For this reason, we use labelled directed graphs with
probabilities in the definition of the games. The labels for each player are of the
form:

λ = (L→s R,D,T , ϕpre, ϕinv, ϕpost, It, Ip, m, τe).

Except for a rewriting rule with invariants, the label λ specifies a time interval
It ⊆ [0,∞) from which the player can choose the time bound for the rule and, if
there are other continuous parameters p1, . . . , pn, also an interval Ipj ⊆ R for each
parameter. The element m ∈ {1,∗,∞} specifies if the player must choose a single
match of the rule (m = 1), apply it simultaneously to all possible matches (m = ∞,
useful for modeling nature) or if any number of non-intersecting matches might be
chosen (m = ∗); τe tells which relations must be matched exactly (all other are in τh).

We define a general structure rewriting game with k players as a directed graph
in which each vertex is labelled by k sets of labels denoting possible actions of the
players. For each k-tuple of labels, one from each set, there must be an outgoing
edge labelled by this tuple, pointing to the next location of the game if these actions
are chosen by the players. There can be more than one outgoing edge with the
same label in a vertex: In such case, all edges with this label must be assigned
probabilities (i.e. positive real numbers which sum up to 1). Moreover, an end-point
of an interval It or Ip in a label can be given by a parameter, e.g. x. Then, each
outgoing edge with this label must be marked by x ∼N (µ, σ), x ∼U(a, b) or x ∼E(λ),
meaning that x will be drawn from the normal, uniform or exponential distribution
(these 3 chosen for convenience). Additionally, in each vertex there are k real-valued
terms of the logic presented above which denote the payoff for each player if the
game ends at this vertex.

A play of a structure rewriting game starts in a fixed first vertex of the game graph
and in a state represented by a given starting structure. All players choose rules,
matches and time bounds allowed by the labels of the current vertex such that the
tuple of rules can be applied simultaneously. The play proceeds to the next vertex
(given by the labeling of the edges) in the changed state (after the application of
the rules). If in some vertex and state it is not possible to apply any tuple of rules,
either because no match is found or because of the constraints, then the play ends
and payoff terms are evaluated giving the outcome for each player.

9



1 Specification

Example. Let us define tic-tac-toe in our framework. The state of the game is
represented by a structure with 9 elements connected by binary row and column
relations, R and C, as depicted on the right in Figure 1.2. To mark the moves of the
players we use unary relations P and Q. The allowed move of the first player is to
mark any unmarked element with P and the second player can mark with Q. Thus,
there are two states in the game graph (representing which player’s turn it is) and
two corresponding rules, both with one element on each side (left in Figure 1.2).
The two diagonal relations can be defined by D1(x, y) = ∃z(R(x, z) ∧ C(z, y)) and
D2(x, y) = ∃z(R(x, z) ∧C(y, z)) and a line of three by L(x, y, z) = (R(x, y) ∧ R(y, z)) ∨
(C(x, y)∧C(y, z))∨ (D1(x, y)∧D1(y, z))∨ (D2(x, y)∧D2(y, z)). Using this definitions,
the winning condition for the first player is given by ϕ = ∃x∃y∃z(P(x)∧ P(y)∧ P(z)∧
L(x, y, z)) and for the other player analogously with Q. To ensure that the game
ends when one of the players has won, we take as a precondition of each move the
negation of the winning condition of the other player.

10
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2 Term Operations

2.1 Types

When defining any language or grammar or even when just writing a program you
almost always have to start by specifying what kind of objects you are going to
operate on. You can do this either by defining classes in programming languages or
by the use of non-terminal symbols in context-free grammars. Types play this role,
they are used to specify what group of things you are talking about. Still we are not
happy with some flat enumeration of possible types, but we allow polymorphic types
(sometimes called “generics”). In this way you can not only have simple types like
int or boolean but also types with variables like list(α) meaning “list of something”,
so that you can then write both list(int) and list(boolean). Here we present the
mathematical definitions for types.

2.1.1 Definition of Types

Let Θ be a countably infinite set of type variables. Let Γ be a finite set of type
symbols. Let h1, h2, h3, . . . be a sequence such that the sets Θ, Γ, H = {h1, h2, h3, . . .}
are pairwise disjoint. Let arity∶Θ∪Γ∪H → {0, 1, 2, 3, . . .} be a function which assigns
some arity to each type symbol and such that arity(hn) = n + 1 and arity(α) = 0 for
each type variable α ∈ Θ.

The set of types is defined inductively as the smallest set G such that:

(1) Θ ⊂ G

(2) {T ∈ Γ∶arity(T) = 0} ⊂ G

(3) if T ∈ Γ ∪ H, arity(T) = n ≥ 1 and R1, . . . , Rn ∈ G then T(R1, . . . , Rn) ∈ G.

In other words, the set of types is the set of all trees whose nodes contain elements
of Θ ∪ Γ ∪ H and such that for each node the number of its children is equal to the
arity of the element contained in the node. Leaves have elements with arity 0.

Let us adopt the notational convention that the type hn(R1, R2, . . . , Rn, R) will be
denoted as R1, R2, . . . , Rn → R. Such types will be called functional types. In other
words, a type is called a functional type if and only if its top symbol belongs to H.
All other types will be called simple types.

Let us define the function typarity∶G → {0, 1, 2, 3, . . .} in the following way:

(i) typarity(T) = 0 for each simple type T ∈ G

(ii) typarity(R1, R2, . . . , Rn → R) = n for functional types.

We are going to need the function TypeVar which returns the set of all type variables
occurring in a given type:

(1) TypeVar(x) = {x} for each type variable x ∈ Θ

12



2 Term Operations

(2) TypeVarVar(t) = ∅ for each type t ∈ Γ with arity(t) = 0

(3) TypeVar( f (t1, . . . , tn)) = TypeVar(t1)∪ . . . ∪ TypeVar(tn) otherwise.

2.1.2 Definition of Substitutions

For an arbitrary function σ∶Θ → G put Dom(σ) = {α ∈ Θ∶σ(α) /= α}. Let Subst =
{σ∶Θ → G∶Dom(σ) is finite}. An element of the set Subst is called a substitution.
The interpretation is that such a function substitutes types for type variables. Let
σ ∈ Subst. Let us extend this function so that it can be applied to any type to obtain
a new type with the type variables in the original type replaced according to the
function σ. Let the function σ∶G → G be defined inductively in the following way:

(1) σ(α) = σ(α) for each α ∈ G ∩Θ

(2) σ(T) = T for each T ∈ G with arity(T) = 0

(3) σ(T(R1, . . . , Tn)) = T(σ(R1), . . . , σ(Rn)).

2.1.3 Composition of Substitutions

Let σ, δ∶Θ → G be two substitutions with their extensions σ, δ∶G → G. Notice that

{α ∈ Θ∶σ ○ δ(α) /= α} ⊂ {α ∈ Θ∶σ(α) /= α}∪ {α ∈ Θ∶ δ(α) /= α},

where f ○ g(x) = f (g(x)). Hence, the set {α ∈ Θ∶σ ○ δ(α) /= α} is finite and the function
σ ○ δ is a substitution. Now, we have the following formal relationship:

σ ○ δ = σ ○ δ.

Let the function σ ○ δ be called the composition of the substitutions σ and δ.
Let σ1, σ2∶Θ → G be substitutions. We say that σ1 is more general than σ2 if and

only if there exists a substitution δ ∈ Subst such that δ ○ σ1 = σ2.

2.1.4 Unification of Types

Let R = {R1, . . . , Rn} be a finite set of types. We say that these types can be unified if
and only if there exists a substitution σ such that σ(R1) = σ(R2) = . . . = σ(Rn). Such
a substitution will be called a unifier for these types. Let Uni(R) denote the set of
all such unifiers. Formally,

Uni(R) = {σ ∈ Subst∶σ(R) is a singleton},

where σ(R) = {σ(R)∶R ∈ R}. Obviously, the types R1, . . . , Rn can be unified if and
only if Uni({R1, . . . , Rn}) /= ∅. Let

MGU(R) = {σ ∈ Uni(R)∶ (∀ρ ∈ Uni(R)) σ is more general than ρ}.
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Elements of MGU(R) are called most general unifiers for the finite set of types R.
Now, if R = {R1, . . . , Rn} and S = {S1, . . . , Sm} are two finite sets of types we may

want to find a substitution that is a unifier for both R and S at the same time,
in which case we would have σ(R1) = . . . = σ(Rn) and σ(S1) = . . . = σ(Sm). More
generally, let {R1, . . . ,RN} be a finite set of finite sets of types. Then we define

Uni2({R1, . . . ,RN}) = Uni(R1)∩ . . . ∩Uni(RN)}.

And putting Ψ = {R1, . . . ,RN}, we define

MGU2(Ψ) = {σ ∈ Uni2(Ψ)∶ (∀ρ ∈ Uni(Ψ)) σ is more general than ρ}.

We are going to present an algorithm for computing MGU2({R1, S1}, . . . ,{Rn, Sn}).
We are going to prove two theorems about most general unifiers. First of all,

if there exists a unifier then there exists a most general one. In other words, if
Uni(R) /= ∅ then MGU(R) /= ∅. Furthermore, we are going to present an algorithm
which computes a most general unifier for any finite set of types or declares that
none exists. Secondly, we are going to prove that any two most general unifiers are
identical up to variable renaming. More precisely, for every σ1, σ2 ∈ MGU(R) there
exists a substitution δ∶Θ → Θ such that σ1 = δ ○ σ2.

2.1.5 Unification Algorithm

Let S = {{t1, s1}, . . . ,{tn, sn}} ⊂ P(G). The algorithm below returns a substitution
subst ∈ MGU2(S) or fails when Uni2(S) is empty. In this algorithm the substitution
subst is represented as a finite list of items of the form x ← t (x ∈ Θ, t ∈ G) where
x is a type variable and t is a type substituted for that variable. The commands
apply x ← t to S and apply x ← t to subst tacitly (and temporarily) introduce the
substitution σ ∈ Subst given by σ(x) = t and Dom(σ) = {x}. The first command
replaces S with {{σ(t1), σ(s1)}, . . . ,{σ(tn), σ(sn)}} and the second command replaces
subst with σ ○ subst.

2.1.6 Internal Type Names

We are going to introduce a mathematical function which takes a type (an element
of G) and returns a string (= a finite sequence of integers 32-127 interpreted as
ASCII characters). This function will play no role in the theory of rewriting terms
but will be essential in programming practice. The strings returned by this function
will be interpreted as "names" of types — for purposes of developing and debugging
code and for human-readable display.

We want this function to return such a name for a given type as to reflect its
internal structure. It must represent the whole tree structure of the type and carry
information whether a given node is a variable or not and whether a given node is a
simple type or a functional type.
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Algorithm 1: Algorithm for Computing MGU2
repeat

for all {x, t} ∈ S with x ∈ Θ do
if x = t then

remove {x, t} from S
else

if x ∈ TypeVar(t) then
FAIL

else
remove {x, t} from S
apply x ← t to S
apply x ← t to subst
append x ← t to subst

end if
end if

end for
for all { f (t1, . . . , tn), g(s1, . . . , sm)} ∈ S do

if f /= g then
FAIL

else
remove { f (t1, . . . , tn), g(s1, . . . , sn)} from S
append {t1, s1}, . . . ,{tn, sn} to S

end if
end for

until S = ∅
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Let us refer to this name-assigning function as TypeName. We also need an aux-
iliary function SymbolName for names of type symbols. The strings returned by the
function SymbolName must not contain any of the following characters: @ ( ) [ ] , ‘ ’ .
If r is a type symbol with arity zero then let TypeName(r) = SymbolName(r). Moreover,
we want these two naming functions to be injective.

We demand that the name of any type variable begins in @ ? — followed by
a nonempty string — and the rest of the name does not contain any of the following
characters: @ ( ) [ ] , ‘ ’ .

By induction, we define the function TypeName for types with arity greater than
zero.

If l is a type symbol with arity n then let TypeName(l(t1, . . . , tn)) = SymbolName(l) +

( + TypeName(t1) + , + . . . + , + TypeName(tn) + ) .
And functional types are dealt with in the following way:

TypeName(hn(t1, . . . , tn+1)) = @ F ( + TypeName(tn+1) + , +

TypeName(t1) + , + . . . + , + TypeName(tn) + ) .

Internal Format Lexer

For certain very technical reasons we need to represent types and terms as strings.
Below we present a lexer for dealing with such an internal format.

The lexer is defined by the following delimiters:

( ) , [ ] @F @L @V @Y @T @: @‘ @?
which means that to change a string of characters to a sequence of tokens we

remove all white spaces and split on the above delimiters.
For example the name of the type list(α) consisting of a node with name list and

arity 1 and a leaf being a type variable with name a is list (@? a). When the lexer
processes this name it returns the following sequence of tokens.

name delimiter delimiter name delimiter
list ( @? a )
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2.2 Syntax Definitions

Let us fix a special element of the set of types: term_type ∈ G.
A syntax definition is a triple (a, b, c) such that

(1) a ∈ { type, constructor, function, variable },

(2) b is a finite sequence of elements which are either types or strings,

(3) if a /= type then c ∈ G (c is a type),

(4) if a = type then b does not contain any types except term_type
(the only type allowed in such a syntax definition is the special type term_type),

(5) if a = constructor then c = head() or c = head(α1, . . . , αn)
where head is a type symbol and α1, . . . , αn are type variables.

Types are elements of the set G and strings are interpreted as ASCII characters.
Notice that the set of types is disjoint from the set of strings.

Examples of syntax definitions
type boolean -

constructor true boolean
constructor α : : list(α) list(α)
function α equals α boolean
variable x boolean
variable multiple word variable name boolean
variable xx boolean boolean

2.2.1 Automatic Functional Syntax Definitions

To each syntax definition which declares a constructor, function or variable there
corresponds a special functional syntax definition. Before we define this new con-
cept, let us take a look at some examples of functional syntax definitions which
correspond to some of the syntax definitions given earlier as examples.

constructor { } : : { } α, list(α)→ list(α)
function { } equals { } α, α → boolean
variable { x } boolean
variable xx { } boolean → boolean

Given a syntax definition (a, b, c) where a /= type, let us define the corresponding
functional syntax definition as (A, B, C) such that

(1) A = a

(2) if there are no types in b then C = c
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(3) if there is at least one type in b then C is the functional type R1, . . . , Rn → R
where Ri’s are the consecutive types appearing in b

(4) B contains only strings and the strings appearing in b are also preserved in B

(5) if b does not contain types then the first string in B is a new { and the last string
is a new }

(6) else in place of types appearing in b,
we put the two strings { } as shown in the examples.

2.2.2 Generating Names from Syntax Definitions

We are going to introduce a mathematical function — called GeneratedName — which
takes a syntax definition and returns a string (= a finite sequence of integers 32-127
interpreted as ASCII characters). This function will play no role in the theory of
rewriting terms but will be essential in programming practice. The strings returned
by this function will be interpreted as "names" of syntax definitions — for purposes
of developing and debugging code and for human-readable display.

We want this function to return such a name for a given syntax definition as to
reflect its internal structure. First of all, the strings present in a syntax definition
will be preserved by the naming function with the following modifications to deal
with special characters:

/ → //
_ → /_
( → /lb
) → /rb
[ → /ls
] → /rs
, → /cm
‘ → /qt
′ → /ap
@ → /at

The first character of each name of a syntax definition is determined in the follow-
ing way: T for type, C for constructor, F for function and V for variable.

The rest of the name is formed by keeping the strings (with the modifications
mentioned above), inserting /? for any type, and separating the list with underscore
(_). In this way the generated name for the list constructor presented above is

C\?_:_:_\?

You should note that in this way names would not be unique and to prevent this
we allow a suffix in the generated name that consists of an underscore (_) followed
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by an integer followed by a backslash. For example, if we have these two syntax
definitions

constructor α : : list(α) list(α)
constructor int : : list(int) list(int)

then the name of the second one will have a suffix at the end:

C\?_:_:_\?_0\

Two names are corresponding when they differ only in the first letter and in the
optional prefix. This correspondence will play an important role in defining prefer-
ences in the parser.

syntax definition generated name

constructor [ ] list(α) C/ls/rs
constructor ( α1 , α2 ) pair(α1, α2) C/lb/?/cm/?/rb
function int a_maja int /psy boolean F/?_a/_maja_/?_//psy

It might not be obvious at first sight but you can check that by calculating whether
an even or odd number of backslashes appears before special symbols and under-
scores it is possible to reconstruct — from a name generated in this way — the exact
form of the syntax definition from which it was generated, and all the strings used
in this syntax definition.

2.2.3 User Interface

Now we are going to define a special displaying function which takes two arguments
and returns a string. The first argument is a finite sequence of strings some of
which may be empty, say A1, . . . , AN. The second argument is a finite sequence of
nonempty strings, say B1, . . . , BM.

The algorithm that computes the function can be roughly stated as follows. We
go through the first sequence string by string from left to right (and simultaneously
we look at consecutive strings from the second sequence and use them when nec-
essary). If we find a nonempty string (in the first sequence) we display it and move
on. If we find an empty string we display the next coming string from the second
sequence or {} if we have already run out of the second sequence. When we have
gone through the first sequence and there’s still something left of the second se-
quence, we display the rest as a tuple: we enclose it in brackets and separate the
strings with commas. Examples:

(ala,-,ba,-,cen,-,dak) (x) --> ala x ba {} cen {} dak
(ala,-,ba,-,cen,-,dak) (x,yy) --> ala x ba yy cen {} dak
(ala,-,ba,-,cen,-,dak) (x,yy,z1) --> ala x ba yy cen z1 dak
(ala,-,ba,-,cen,-,dak) (x,yy,z1,u) --> ala x ba yy cen z1 dak (u)
(ala,-,ba,-,cen,-,dak) (x,yy,z1,u,v) --> ala x ba yy cen z1 dak (u,v)
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(-,:,:,-) (x,y) --> x : : y
(1,-,+,-) (2,3) --> 1 2 + 3

We want to make a modification to the displaying function given above. We want
to avoid displaying spaces between two digits or between two non-alphanumeric
characters. This is just a heuristic that makes things more readable in practice. The
modification is very easy: before we put a space between two strings we first look
at the last character of the first one and the first character of the second one. If
both are digits, letters, both non-alphanumeric or these are an opening bracket ( or
[ and and the second is alphanumeric, or the first is alphanumeric and the second a
closing bracket, then we do not put a space between them.

(-,:,:,-) (x,y) --> x :: y
(1,-,+,-) (2,3) --> 12 + 3

It should be noted that given a syntax definition (or its generated name) we can
create a corresponding finite sequence of strings to be used as the first argument
for the displaying function described above.

2.2.4 Basic Syntax Definitions

We use syntax definitions as the basic means of communication between the pro-
gram and the user. You will normally enter objects in a natural syntax and we will
use the corresponding syntax definitions to parse them and create terms.

Terms are defined in the next section and they are the true objects manipulated
after parsing. But term symbols that are necessary to construct terms are just
the names of the corresponding syntax definitions created by the GeneratedName

function described above.
Before we go on to define terms we want to show you the most basic syntax

definitions we use. The definitions presented here are the only ones built into the
source code, all other are user-defined. It might be unclear at that point what all
these definitions mean, but it is good to look over them to get some intuition now.
Moreover, we are going to refer to a number of special term and type symbols, e.g.
term_type was already used before. The definitions presented below show the real
representation that is used for such special elements.

Class ’’bit’’.
Element ’’bit’’ ’’0’’ as bit.
Element ’’bit’’ ’’1’’ as bit.

Class ’’char’’.
Element ’’char’’ ’’code’’ bit bit bit bit bit bit bit bit as char.
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Class ’’term’’ ’’type’’.

Class term type ’’list’’.
Element ’’[’’ ’’]’’ as ?a list.
Element ?a ’’:’’ ’’:’’ ?a list as ?a list.

Class ’’string’’.
Element ’’string’’ ’’from’’ char list as string.

Class ’’boolean’’.
Element ’’true’’ as boolean.
Element ’’false’’ as boolean.

Class ’’ternary’’ ’’truth’’ ’’value’’.
Element ’’true’’ as ternary truth value.
Element ’’unknown’’ as ternary truth value.
Element ’’false’’ as ternary truth value.

// Term types (the special type of term types).
Element ’’?’’ string as term type.
Element ’’type’’ string ’’:’’ term type list as term type.
Element ’’funtype’’ term type list ’’-’’ ’’>’’ term type as term type.

Class ’’syntax’’ ’’element’’.
Element ’’’’’ ’’’’’ string ’’’’’ ’’’’’ as syntax element.
Element term type as syntax element.
Class ’’syntax’’ ’’element’’ ’’sequence’’.
Element syntax element as syntax element sequence.
Element syntax element syntax element sequence as syntax element sequence.
Class ’’syntax’’ ’’definition’’.
Element ’’class’’ syntax element sequence as syntax definition.
Element ’’element’’ syntax element sequence ’’as’’ term type

as syntax definition.
Element ’’function’’ syntax element sequence ’’as’’ term type

as syntax definition.
Element ’’variable’’ syntax element sequence ’’as’’ term type

as syntax definition.

Class ’’term’’.
Element ’’var’’ string ’’:’’ term type ’’(’’ term list ’’)’’ as term.
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Element ’’term’’ string ’’(’’ term list ’’)’’ as term.

Class ’’constructor’’.
Element ’’constructor’’ string ’’from’’ term type list ’’to’’ term type

as constructor.

Class ’’rewrite’’ ’’rule’’.
Element ’’rewrite’’ term ’’to’’ term as rewrite rule.

Class ’’input’’ ’’rewrite’’ ’’rule’’ ’’of’’ term type.
Element ’’let’’ ?a ’’be’’ ?a as input rewrite rule of ?a.

Class ’’priority’’ ’’input’’ ’’rewrite’’ ’’rule’’ ’’of’’ term type.
Element ’’let’’ ’’major’’ ?a ’’be’’ ?a

as priority input rewrite rule of ?a_1.

Class ’’function’’ ’’definition’’.
Element ’’function’’ string ’’from’’ term type list ’’to’’ term type

as function definition.

Class ’’class’’ ’’definition’’.
Element ’’class’’ ’’of’’ term type as class definition.

Class term type ’’exception’’.
Element ’’!’’ ’’!’’ ?a ’’!’’ ’’!’’ as ?other_than_a! exception.
Element ’’+’’ ’’+’’ ?a ’’+’’ ’’+’’ as ?a exception.

// If-then-else.
Function ’’if’’ boolean ’’then’’ ?a ’’else’’ ?a as ?a.

// Bracketing = identity.
Function ’’(’’ ?b ’’)’’ as ?b.

// Verbatim function explained later.
Function ’’<’’ ’’|’’ ?b ’’|’’ ’’>’’ as ?b.

// Preference function used for disambiguating parses.
Function term ’’parsed’’ ’’preferred’’ ’’to’’ term as ternary truth value.

// Preprocessing function to customize the parser.
Function ’’#’’ ’’#’’ ’’#’’ ?p as ?q.
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// Meta-level functions allow changing the system dynamically.
Function ’’code’’ ?a ’’as’’ ’’term’’ as term.
Function ’’decode’’ term ’’with’’ ’’type’’ ’’as’’ ?a as ?a.

Function ’’get’’ ’’class’’ ’’definitions’’ as class definition list.
Function ’’get’’ ’’function’’ ’’definitions’’ as function definition list.
Function ’’get’’ ’’constructors’’ as constructor list.

// Special class used for loading files.
Class ’’outside’’ ’’paths’’.
Element ’’library’’ ’’:’’ ’’/’’ string as outside paths.
Element ’’file’’ ’’:’’ ’’/’’ string as outside paths.
Class ’’load’’ ’’command’’.
Element ’’load’’ ’’state’’ outside paths as load command.

// Closing context removes visible variables from scope.
Class ’’system’’ ’’commands’’ ’’of’’ term type.
Element ’’close’’ ’’context’’ as system commands of ?a.
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2.3 Terms with Types

In the previous section we defined classes of objects so now we can proceed to defin-
ing the objects i.e. terms. You can imagine a term as any object that finally belongs
to some type. For example 1 is a term of type int and similarly 1+ 2 sometimes writ-
ten as +(1, 2) is also of type int. It might also happen that you will have variables
inside terms, like in 1+ x. Symbols and variables have associated types, but it might
be unclear what is actually the type of the whole terms. Moreover, the types for
variables might be unspecified and then these have to be reconstructed. We present
here the necessary definitions and algorithms to handle terms with types.

2.3.1 Definition of Terms

In order to define terms we need the set G of types and the function typarity∶G →
{0, 1, 2, 3, . . .} defined earlier.

Let V be a countably infinite set of term variables. Let Σ be a finite set of term
symbols. We demand that the sets G, V, Σ are pairwise disjoint. Let type∶Σ → G
be a function which assigns a fixed type to each term symbol. We do not assign
types to term variables. We assign arity to each term symbol s ∈ Σ by arity(s) =
typarity(type(s)). We do not assign arity to term variables.

Let t be a tree whose nodes contain elements of V ∪ Σ and let vtype∶V → G be a
function which assigns a type to each term variable. Then for each node in this tree
we can define its arity in the following way: if the node contains a term symbol s ∈ Σ
then the arity of the node is equal to arity(s) and if it contains a term variable x ∈ V
then the arity of the node is equal to typarity(vtype(x)).

Now, the ordered pair (t, vtype) is called a term if and only if for each node that
is not a leaf the number of its children is equal to its arity. Notice that we place no
demands on the arity of leaves.

We can think that each node of a term has an inherent type: either through the
global function type∶Σ → G (when it contains a term symbol) or through the local
function vtype∶V → G (when it contains a term variable).

If s is a subtree of t then we say that (s, vtype) is a sub-term of (t, vtype). Whenever
the context is clear we will simply write s or t to refer to the terms (s, vtype) and
(t, vtype) respectively. We will also write that s is a sub-term of t.

We are going to need the function TermVar which returns the set of all term vari-
ables occurring in a given term:

(1) TermVar(x) = {x} for each term variable x ∈ V

(2) TermVar(t) = ∅ for each term symbol t ∈ Σ with arity(t) = 0

(3) TermVar( f (t1, . . . , tn)) = TermVar(t1)∪ . . . ∪ TermVar(tn) if f is a term symbol
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(4) TermVar(x(t1, . . . , tn)) = {x} ∪ TermVar(t1) ∪ . . . ∪ TermVar(tn) if x is a term vari-
able.

2.3.2 Definition of Well-Typed Terms

A typing of a term (t, vtype) is any function which assigns a type to each of its sub-
terms. The types which each sub-term receives from such a function should not be
confused with the types of the nodes inherent in that term.

Let Ψ be a typing of a term (t, vtype). We say that Ψ is coherent if and only if for
each sub-term u the following condition holds:

(i) if u is a leaf containing a term variable x ∈ V then Ψ(u) = vtype(x)

(ii) if u = x(t1, . . . , tn) where n ≥ 1, x ∈ V and vtype(x) = α1, . . . , αn → β

then Ψ(u) = β and Ψ(ti) = αi for each i = 1, . . . , n

(iii) if u is a leaf containing a term symbol h ∈ Σ
then there exists a substitution σ ∈ Subst such that Ψ(u) = σ(type(h))

(iv) if u = h(t1, . . . , tn) where n ≥ 1, h ∈ Σ and type(h) = α1, . . . , αn → β

then there exists a substitution σ ∈ Subst such that Ψ(u) = σ(β)
and Ψ(ti) = σ(αi) for each i = 1, . . . , n.

We say that the term (t, vtype) can be well-typed if and only if there exists a coher-
ent typing for this term. We say that the types of the term variables of t can be
reconstructed if and only if there exists a substitution ρ ∈ Subst such that the term
(t, ρ ○ vtype) can be well-typed.

If E ⊂ Subst then let MostGeneral(E) = {ρ ∈ E∶ (∀σ ∈ E) ρ is more general than σ}. If
Ψ1 and Ψ2 are two typings of the term (t, vtype) then we say that Ψ1 is more general
than Ψ2 if and only if there exists a substitution σ ∈ Subst such that σ ○Ψ1 = Ψ2.

In the next section we are going to present an algorithm which takes an arbitrary
term (t, vtype) and computes a most general substitution ρ such that (t, ρ ○ vtype)
can be well-typed and a most general coherent typing of the term (t, ρ ○ vtype), or
fails if the term cannot be well-typed.

Recall that for a term which can be well-typed there exists a most general co-
herent typing. This typing — being a function assigning a type to each subterm —
can be used to assign a type to such a term by simply taking the type of the whole
term. Since a most general coherent typing is not unique (although it is unique up
to type variable renaming), this type assignment is not unique, either. However, let
us select one of the possible outcomes of the type assigning procedure to obtain a
function TermType assigning types to terms that can be well-typed. From now on,
when we refer to the type of a term we are tacitly referring to the function TermType.
Furthermore, terms that can be well-typed will be called typed terms.
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2.3.3 Type Reconstruction Algorithm

Type Variable Renaming

We say that a substitution σ ∈ Subst is a type variable renaming if and only if σ(α) ∈ Θ
for every α ∈ Θ and σ∶Θ → Θ is a bijection. If σ is a type variable renaming then let
Range(σ) = {σ(α)∶ α ∈ Dom(σ)}.

Since the set of type variables Θ is infinite, we have the following theorem: for
any finite A ⊂ Θ and any finite R ⊂ Θ there exists a type variable renaming σ such
that

(1) Dom(σ) = R

(2) Range(σ)∩ A = ∅.

In our algorithm we will have the following situation: a finite set of type variables
A0 ⊂ Θ and a sequence of finite sets of type variables R1, R2, . . . , Rn ⊂ Θ. These
sets will not necessarily be pairwise disjoint. We will be interested in "renaming"
the sets in our sequence (thus obtaining a new sequence R′

1, . . . , R′
n) so that the

sets A0, R′
1, R′

2 . . . , R′
n are pairwise disjoint. In the first step we will make use of the

type variable renaming σ1 such that Dom(σ1) = R1 and Range(σ1) ∩ A0 = ∅ and in
the k-th step we will use the type variable renaming σk such that Dom(σk) = Rk and
Range(σk)∩ (A0 ∪ R1 ∪ . . . ∪ Rk−1) = ∅. Then R′

k = {σk(α)∶ α ∈ Rk}.

The Algorithm

We will present the algorithm in three steps. Additionally, we will illustrate its work-
ings by following what it does with two example terms. Naturally, the examples are
extra — the algorithm itself is presented with sufficient rigor.

We will use the following symbols to construct the two examples:
type symbol arity

int 0
bool 0
list 1
pair 2

term symbol type typarity

7 int 0
True bool 0
Pair a,b → pair(a,b) 2
Cons a,list(a) → list(a) 2
Nil list(a) 0

And the following variables will be used:
type variables term variables

a,b,c,d,e,f,g,h,i,j x,y
The two examples are:

(1) Pair(Cons(x,Nil),Cons(y,Nil)),
(2) Pair(Cons(x,Cons(7,Nil)),Cons(x,Cons(True,Nil))),
where vtype in both cases is such that vtype(x) = a and vtype(y) = b.
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These terms can be depicted in the following way:

Pair

{{ ##
Cons

�� ##

Cons

�� ##
x Nil y Nil

Pair

{{ ##
Cons

�� ##

Cons

�� ##
x Cons

{{ ��

x Cons

{{ ��
7 Nil True Nil

As its input, the algorithm takes an arbitrary term (t, vtype) where t is a tree
according to the definition of a term. We are going to need an isomorphic tree ψ

whose nodes contain the types of the elements in the corresponding nodes of the
tree t. The types of elements of t are determined by the global function type for
term symbols and by the local function vtype for term variables occurring in t.

The resulting ψ-trees for our example terms can be depicted as follows.

a, b → pair(a, b)

|| ""
a, list(a)→ list(a)

�� ""

a, list(a)→ list(a)

�� ��
a list(a) b list(a)

a, b → pair(a, b)

yy %%
a, list(a)→ list(a)

�� %%

a, list(a)→ list(a)

�� %%
a a, list(a)→ list(a)

yy ��

a a, list(a)→ list(a)

yy ��
int list(a) bool list(a)

Let RECOVARS = TypeVar(vtype(TermVar(t))) ⊂ Θ. Notice that RECOVARS is a finite
set of type variables. When the algorithm returns the substitution ρ which recon-
structs the types of the term variables in t we will have Dom(ρ) ⊂ RECOVARS.

In the first example, RECOVARS = {a, b}; and in the second example, RECOVARS = {a}.
STEP ONE:

Let n be the number of nodes in t containing a term symbol. Let R1, . . . , Rn denote the
sets of type variables occurring in those nodes of ψ whose corresponding nodes in t
contain a term symbol. Let A0 = RECOVARS. Perform the variable renaming procedure
described above to obtain a new tree ψ1 of types isomorphic to ψ such that the sets
of type variables occurring in those renamed nodes are pairwise disjoint and each
of them is disjoint from RECOVARS.
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The result of the variable renaming can be depicted as follows.

c, d → pair(c, d)

|| ""
e, list(e)→ list(e)

�� ""

f , list( f )→ list( f )

�� ��
a list(g) b list(h)

c, d → pair(c, d)

yy %%
e, list(e)→ list(e)

�� %%

f , list( f )→ list( f )

�� %%
a g, list(g)→ list(g)

yy ��

a h, list(h)→ list(h)

yy ��
int list(i) bool list(j)

STEP TWO:
Let W be the set of thus renamed nodes of ψ1 minus the set of leaves.

Algorithm 2: Type Reconstruction Algorithm: Step Two

let BIGSACK = ∅
for all α1, . . . , αn → β ∈ W do

for all i ∈ {1, . . . , n} do
let . . . → βi denote the type of the i-th child
append {αi, βi} to BIGSACK

end for
end for
find σ ∈ MGU2(BIGSACK) or fail

In the first example, BIGSACK =

{{c, list(e)},{d, list( f )},{e, a},{list(e), list(g)},{ f , b},{list( f ), list(h)}}

and σ ∈ MGU2(BIGSACK) can be represented as

{c ← list(a), d ← list(b), e ← a, f ← b, g ← a, h ← b}.

In the second example, BIGSACK =

{{c, list(e)},{d, list( f )},{e, a},{list(e), list(g)},

{ f , a},{list( f ), list(h)},{g, int},{list(g), list(i)},

{h, bool},{list(h), list(j)}}

and MGU2(BIGSACK) is empty because ultimately we run against int /= bool.
STEP THREE:

Let ρ(α) = σ(α) for each α ∈ RECOVARS and ρ(α) = α otherwise. This ρ is the substi-
tution returned by the algorithm. We say that it reconstructs the types of the term
variables: we now look at the term (t, ρ ○ vtype) which differs from the original term

28



2 Term Operations

(t, vtype) in that the types of the term variables are now such that there exists a
coherent typing for the new term.

Let the coherent typing (returned by the algorithm) be the result of collapsing the
functional types in σ ○ψ1 except in the leaves, where collapse(α1, . . . , αn → β) = β.

The new tree of types σ ○ψ1 can be depicted as

list(a), list(b)→ pair(list(a), list(b))

tt **
a, list(a)→ list(a)

�� **

b, list(b)→ list(b)

�� ''
a list(a) b list(b)

and after the collapsing procedure we get the representation of the coherent typ-
ing which is ultimately returned by the algorithm:

pair(list(a), list(b))

vv ((
list(a)

�� ((

list(b)

�� $$
a list(a) b list(b)

2.3.4 Internal Term Display Format

Before we start with the display format we have to note that things can get coded
as term. In fact each basic syntax definition presented in the previous chapter gives
rise to two function that code and decode objects in the source code as appropriate
terms and decode them back from terms. These functions are used throughout this
document, for example when we need to distinguish if a term represents a list or a
string or a syntax definition etc.

In a similar way to types we represent terms in an internal format in the following
way.

(1) if t represents a string s then we write @’s@’,

(2) if t represents a list t1, . . . , tn then we write @L[t1, . . . , tn],

(3) if t represents a type T then we write @Y T using internal representation of
types for T,

(4) if t encodes another term t′ then we write @T t′ using this procedure for t′ again,

(5) to display x(t1, . . . , tn) for a variable symbol x with vtype(x) = T we print
@V [x @: T ] (t1, . . . , tn),

(6) to display f (t1, . . . , tn) we use the standard notation f (t1, . . . , tn).
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The special cases for lists, strings, types and terms are used because it makes the
internal format more readable for larger terms.
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2.4 Ground Rewriting

2.4.1 Rewrite Rules

Since we want to transform terms, we need to define programs — transformations
acting on terms. Let the set of term symbols be divided into two disjoint subsets:
the set of constructors and the set of function names. Normally, functions will be
transformed and constructors will form our data-types.

To define a function in a program that we want to execute we are going to need
the concept of a rewrite rule — a pair of terms l and r, the left and right side of the
rule, denoted by l → r.

Definition of Rewrite Rule

An ordered pair of two typed terms (l, vtype) and (r, vtype′) is called a rewrite rule
if and only if the following conditions hold:

(1) TermType(l) = TermType(r),

(2) TermVar(r) ⊂ TermVar(l),

(3) (∀x ∈ TermVar(r)) vtype(x) = vtype′(x),

(4) all term variables occurring in l are located in the leaves,

(5) the term symbol at the top position in l is a function name,

(6) there are no function names in l except at the top position.

Substitution for Term Variables

Before we define substitutions for term variables we need to introduce the concept
of a term tree.

A term tree is a tree whose nodes contain term symbols or term variables and
which satisfies the following condition: for each node that is not a leaf if it contains a
term symbol then the number of this node’s children is equal to the arity of that term
symbol. Notice that we place no demands on the arity of leaves, and no demands
on nodes containing term variables. Also notice that depending on the choice of a
function vtype∶V → G the pair (this tree, vtype) is a term or not.

A function s — which assigns a term tree to each term variable — such that the
set Dom(s) = {x ∈ V∶ s(x) /= x} is finite will be called a substitution for term variables.
If s is a substitution for term variables, let s be a partial function on the set of term
trees into the set of term trees defined in the following way:

(i) s(x) = s(x) if x is a term variable,
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(ii) s( f (t1, . . . , tn)) = f (s(t1), . . . , s(tn)) if f is a term symbol or f is a term variable
such that f /∈ Dom(s),

(iii) s(x(t1, . . . , tn)) = f (s(t1), . . . , s(tn)) if s(x) = f where x is a term variable and f is
a term variable or a term symbol with arity n.

2.4.2 Application of Rewrite Rules

The rewrite rule (l, vtype1)→ (r, vtype2) can be applied to the typed term (t, vtype) if
and only if there exists a substitution for term variables s such that s(l) = t, in which
case the result of this application is defined to be (s(r), vtype), which is a typed term
with the same type as the original term (t, vtype).

Notice that for any two s1, s2 such that s1(l) = s2(l) = t it holds that s1(r) = s2(r).
Proof. Take any x ∈ TermVar(r). Since TermVar(r) ⊂ TermVar(l), x ∈ TermVar(l), which
allows us to conclude that since s1(l) = s2(l), it holds that s1(x) = s2(x). We showed
that for every x ∈ TermVar(r) it holds that s1(x) = s2(x) — hence s1(r) = s2(r).

It still remains to demonstrate why the result of the application of a rewrite rule
to a typed term is a typed term with the same type.

Rewriting — choosing an appropriate rewrite rule

Let f be a function name and let R be a finite set of all those rewrite rules in the
system that have f at the top position in the left-hand term. Let us consider a typed
term with f at the top position. In this section we will discuss the procedure of
deciding which rewrite rule from the set R should be applied to rewrite this term.

First, we will discuss the simplest case: when the term contains no term variables
and no function names except f at the top position. Then we will move on to the
more complex situation when there are term variables present, and finally we will
cover the case of function names appearing in the term to be rewritten.

No function names and no term variables

Suppose for the time being that our term contains no term variables and no func-
tion names except f at the top position. Now we want to describe the procedure of
deciding whether this term should be rewritten (whether there is a rewrite rule that
should be applied to this term).

First of all, we impose a linear order on the set R so that the first rewrite rule
is more important than the second and so forth. Now, we check whether the first
rule can be applied to this term according to the definition given above. If so, then
we apply this rule and rewrite the term. If not, then we move on to the next rule
according to the linear order. When we have tried all the rewrite rules and none
coould be applied, the term cannot be rewritten.

The algorithm for deciding whether a given rewrite rule can be applied to a given
term with no function names and no variables is quite straightforward. Visually, let’s
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have the left-hand side term of the rewrite rule on the left and the term to be rewrit-
ten on the right. Now, we traverse the two terms and compare them position by
position. If we find a syntactic difference (= different constructors at corresponding
positions) we stop and report that the rewrite rule cannot be applied because, natu-
rally, in such a situation there does not exist a substitution required by the definition.
And if we find a variable on the left we gather the information that the subtree on
the right at the corresponding position should be substituted for this variable. Since
this variable can appear multiple times, it can happen that two or more term trees
would have to be substituted for this variable. In this case we report that the rule
should be rejected. Otherwise, the rule should be applied and we have constructed
the necessary substitution in the meantime. (See Algorithm 3.)

Algorithm 3: Rewriting a term with no function names and no variables

STEP ONE
Let SUBST = ∅ and let SubstVar = ∅.
Let W be the set of positions that appear in both term trees l and t.
for all p ∈ W do

Let a be the subtree of l at position p.
Let b be the subtree of t at position p.
if a is a variable then

SUBST ∶= SUBST ∪ {a ← b}
SubstVar ∶= SubstVar ∪ {a}

else
if the top symbols of a and b are different then

report REJECT and stop
end if

end if
end for

STEP TWO
for all x ∈ SubstVar do

Let A = {ω∶ x ← ω ∈ SUBST}.
if A has more than one element then

report REJECT and stop
end if

end for
report APPLY and return SUBST

2.4.3 Normalisation

We should describe ground normalisation here.
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2.5 Term Simplification

We covered ground rewriting in a chapter before. Now we proceed to simlpifying
terms where variables might appear.

2.5.1 Rewriting — choosing an appropriate rewrite rule

No function names but term variables allowed

Now, let us consider a typed term with f at the top position without excluding
the possibility that it contains term variables, but let it still contain no function
names other than f at the top position. We will demonstrate the problem of deciding
whether this term should be rewritten with a lucid example.

Suppose we have these two rewrite rules:

(1) and(true, true)→ true,

(2) and(x, y)→ f alse with vtype(x) = vtype(y) = bool.

And let our example term be and(z, true) with vtype(z) = bool.
You should notice that the first rule cannot be applied according to the defini-

tion given above because there is no substitution for term variables s such that
s(and(true, true)) = and(z, true). If we move on to the next rule, we notice that it can
be applied through the substitution {x ← z; y ← true} to yield the result f alse. But,
naturally, we don’t want our system to rewrite the term and(z, true) into the term
f alse.

The following definition will be used to decide such cases. Let l → r be a rewrite
rule and let t be a typed term such that TermVar(l)∩ TermVar(t) = ∅. We say that the
rewrite rule l → r clogs on the typed term t if and only if there is no substitution for
term variables s such that s(l) = t but there is a substitution s such that s(l) = s(t).

It is important that the term variables of the left-hand term of the rewrite rule
should be disjoint from the term variables of the term to be rewritten. Consider this
example: if f (C(x))→ h(x) is a rewrite rule and f (x) is a term to be rewritten, then
in fact we have a clog (= we could potentially apply this rule but we’re not sure —
after all, the x in f (x) could be of the form C(z) for some z) but according to the
definition there is no clog.

Now, the procedure for deciding whether we can rewrite a typed term with f at
the top position and no function names anywhere else looks like this:

Try consecutive rewrite rules from the set R according to the linear order of
importance. If you encounter a clog, do not rewrite the term and do not try other
rules. Just stop. If you can apply the rule, then rewrite the term and do not try other
rules. Otherwise, go on to the next rule and repeat.

The definition of clog relies on two notions: matching and unification. We have
a clog when there is no matching but unification is possible. Unfortunately, if we
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wanted to implement clog detection according to this definition we would have a
rather slow-working system for rewriting terms. So our rewriting algorithm is a bit
different from the one which would fully respect the mathematical definition of clog.
First of all, in the case of a term to be rewritten which contains no term variables it
works ideally. However, in the case of a term with term variables it might happen
that our algorithm will report a clog and thus fail to try other rewrite rules, when
in fact there is no clog and other rules could be tried. When this is not the case,
the algorithm rewrites properly — there are no rewriting errors — the only flaw is
that sometimes it might happen that it stalls and leaves the term untouched when
in fact it could be rewritten. But it does not stall in many practical cases where
each variable occurs only once and it is much faster than the complete algorithm,
therefore we consider it a fair tradeoff.

Description of the Rewriting Algorithm

The algorithm for deciding whether a given rewrite rule can be applied to a given
term with no function names but with variables is a straightforward modification of
the algorithm for the case with no variables. As before, let’s have the left-hand side
term of the rewrite rule on the left and the term to be rewritten on the right. Now,
we traverse the two terms and compare them position by position.

If we find a syntactic difference (= different constructors at corresponding posi-
tions) we stop the algorithm and report that the rewrite rule cannot be applied and
should be rejected because there is no possibility of clog since there does not exist
a matching substitution required by the definition of clog.

If we find a variable on the right and a constructor on the left, we report a (poten-
tial) clog because the variable on the right could potentially assume such a value as
to correspond to the tree on the left. (This is the situation when we might be wrongly
reporting a clog.) Once a clog has been reported there is no chance of accepting
the rewrite rule by the algorithm. However, we must continue with the algorithm
because it might still be possible that we detect a syntactic difference elsewhere.

The third situation is when we find a variable on the left. Then we gather the
information that the subtree on the right at the corresponding position should be
substituted for this variable. Since this variable can appear multiple times, it can
happen that two or more term trees would have to be substituted for this variable.
Even in this case it is too early to report that the rule should be rejected. It might
happen that the multiple term trees to be substituted for a single variable could
in fact be unified so that — given appropriate values for the variables occurring in
these multiple terms — it could still be possible to apply the rule, which is exactly
the situation called clog. If in this final stage no clog is detected we reject the rule if
there are multiple terms for a single variable. Otherwise, the rule should be applied
and we have constructed the necessary substitution in the meantime.

Our approach is practical because checking for unification is too costly and what
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we have is good enough because rewriting terms with variables (symbolic computa-
tion) is not meant to be intelligent at this stage (it would have to know all of logic)
and it only has to serve in certain situations where we want to inline simple function
calls and we need to symbolically rewrite terms with variables to achieve this.

The Rewriting Algorithm (Algorithm 4) given below takes two typed terms as in-
put: l and t. The first one is interpreted as the left-hand side of the rewrite rule
which we are trying to apply to the term t to be rewritten. We assume that t has no
function names except at the top position and that l has term variables only in the
leaves.

This algorithm returns

– REJECT when the rewrile rule cannot be applied and other rewrite rules should
be tried;

– CLOG when the rewrite rule cannot be applied but because of a potential possi-
bility that it could be applied the process of trying other rules must be stopped;

– APPLY when the rewrite rule can and should be applied, in which case the
algorithm also returns a substitution s such that s(l) = t.

The following easy example demonstrates the possibility of wrongly reporting clog
when in fact there is none. Let l = f (C(1, x), C(2, y)) and t = f (z, z), where f is a
function name, C is a constructor, and x, y, z are term variables. It is easy to see
that according to the mathematical definition of clog there is no clog here, but the
algorithm — when it reaches the point of comparing C(1, x) with the left-hand z —
will report a clog.

Function names and term variables allowed

Finally, we will discuss the situation when our term to be rewritten contains func-
tion names. Let us demonstrate the problem with an example. Suppose we have
these two rewrite rules:

(1) equals(x, x)→ true with vtype(x) = α,

(2) equals(x, y)→ f alse with vtype(x) = vtype(y) = α.

Let f and g be two function names and let equals( f (z), g(z)) with vtype(z) = int be
the term which we want to rewrite. Naturally, the first rule cannot be applied and
there is no clog. So according to what was said earlier, the system would have to
move on to the second rule — which can be applied — and would have to rewrite
the term into f alse, which is bad, because it might be possible that, say, f (1) = g(1).
So we need to introduce a special awareness into the system that will take care of
such situations — which will treat function calls as unknowns, just like variables.

When we have a term with function names below the top position we must tem-
porarily replace all function calls with term variables in a way which is a one-to-one
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Algorithm 4: Rewriting Algorithm

STEP ONE
Let SUBST = ∅ and let SubstVar = ∅.
Let W be the set of positions that appear in both term trees l and t. We will be
traversing W recursively from node to children so that we never visit a position
when some position above has not been visited yet.
for all p ∈ W do

Let a be the subtree of l at position p.
Let b be the subtree of t at position p.
if a is a variable then

SUBST ∶= SUBST ∪ {a ← b}
SubstVar ∶= SubstVar ∪ {a}

else if the top symbol of b is a variable then
report CLOG and continue but abandon all positions below p

else if the top symbols of a and b are different then
return REJECT and stop

end if
end for
if CLOG has been reported then return CLOG and stop

STEP TWO
for all x ∈ SubstVar do

run the SUB ALGORITHM on the set of term trees {ω∶ x ← ω ∈ SUBST}
if it returns REJECT then

return REJECT and stop
else if it returns CLOG then

report CLOG and continue
end if

end for
if CLOG has been reported then return CLOG and stop
otherwise return APPLY and SUBST

SUB ALGORITHM for the set of term trees {ω1, . . . , ωn}
if there is only one element in the set then

return PASS
else if some ωi = A(. . .) and ωj = B(. . .) where A ≠ B are constructors then

return REJECT
else if w1 = A(s1

1, . . . , s1
k)∧ . . . ∧wn = A(sn

1 , . . . , sn
k ) and A is a constructor then

run the SUB ALGORITHM separately for the following k sets
{s1

1, . . . , sn
1}, . . . ,{s1

k , . . . , sn
k}

if there is at least one REJECT then return REJECT else if there is at least one
CLOG then return CLOG else return PASS

else
return CLOG

end if 37
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correspondence. Then we treat such a modified term tree with the rewriting algo-
rithm — which will be able to detect a clog in our example — and then we replace
the temporary variables back with the original function calls.

In our example, it would be like this: the original term tree equals( f (z), g(z))
would be replaced with, say, equals(tmpvar1, tmpvar2) and according to the rewriting
algorithm there would be a clog detected and it would not be rewritten and then it
would be replaced with equals( f (z), g(z)) and thus the rewriting procedure would
be finished — leaving the term unchanged.

And equals( f (z), f (z)) would be replaced with equals(tmpvar1, tmpvar1) and this
time the rewriting algorithm would determine that the first rule can be applied and
it would be rewritten into true. Since the temporary variables are no longer present,
this is the final form of the original term after rewriting.

2.5.2 Normalisation

In the previous sections we have discussed the situation when we have a term with
a function name at the top position and a set of rewrite rules which have the same
function name at the top position on the left side. We have conclusively answered
the question whether any of those rewrite rules should be applied to the term and if
so, which of them should be used.

Now, we are prepared to discuss a more complex situation. We have a term and
a whole set of rewrite rules with various function names at the top position. The
question now is at which position to apply a rewrite rule. Notice that once we
determine the position we already know from previous sections which rule to choose
or whether to leave the term unchanged.

Normalisation is a process of rewriting a given term step by step until it cannot
be further rewritten.

During this process it may happen that we encounter two identical subterms, in
which case it might be a waste of time to normalise each of them separately and it
might be useful to store the results. Such mechanism is called memoisation and we
discuss it in more detail later. For now we are going to use MEMOISE as a special
function that decides if a result should be kept in memory or not and we will use
RETRIEVE as a function that gets a result from memory if it is there.

The set of function names has a special subset of special function names. Terms
with special function names at the top position are not to be rewritten according
to the algorithm presented above. To rewrite such a term is a different process
which we will not describe at this moment. The important thing to keep in mind
is that when we talk of applying REWRITE at a given position of a term we use
the algorithm described above for normal functions and we use the special pro-
cess — hitherto undescribed — for special functions. Moreover — in some cases
we want to rewrite only the special functions and not the normal ones. We de-
note such rewrite function by REWRITE-SPECIAL and the appropriate normalisa-
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tion procedure that uses always REWRITE-SPECIAL instead of REWRITE is called
NORMALISE-SPECIAL.

We will describe an algorithm which takes a term and rewrites it until it cannot
be further rewritten. It is possible that this algorithm will loop endlessly because of
some inappropriate rewrite rules like for example: (1) f (x)→ g(x) and g(x)→ f (x),
or (2) f (x)→ f ( f (x)).

The normalisation algorithm start by looking for all positions in the input term at
which there is a bracketing function that has the name F/lb_/?_/rb All such positions
are normalised prior to all other, i.e. the brackets are removed.

Then the algorihtm performs the actual normalisation and rewriting with special
care for the if-then-else function, which is named Fif_/?_then_/?_else_?. During
this process we omit all subterms that have the verbatim function in the head, and
verbatim is named F<_|_\?_|_>. This part of normalisation is presented as Algo-
rithm 5 and you should note that whenever we refer to recursive normalisation in
the algorithm we mean only this part of normalisation and not the whole process.

Algorithm 5: Normalisation Algorithm — Main Part

NORMALISE for t = ψ(t1, . . . , tk)

if ψ is a constructor or a variable then
let si be the recursively normalised term ti and return ψ(s1, . . . , sk)

else if ψ is verbatim then
return t

else if ψ is if-then-else, t = ψ(t1, t2, t3) then
let s1 be the recursively normalised condition t1 and let t′ = ψ(s1, t2, t3)
if REWRITE t′ = t′ then

NORMALISE-SPECIAL t′

else
NORMALISE t′

end if
else

let si be the recursively normalised term ti and t′ = ψ(s1, . . . , sn)
if we can RETRIEVE t′ then return the retrieved result
if REWRITE t′ = t′ then let s = t′ else let s = NORMALISE (REWRITE t′)
MEMOISE the pair (t′, s) if necessary and return s

end if

Finally, when the main part of normalisation is done, we get back to the verbatim
functions and remove them according to the rule verbatim(x) → x from all positions
above which there is no other verbatim.

In current implementation there is one more special case which prevents function
normalisation when a new priority rewrite rule is added. It will probably be changed
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in the future so we do not describe it here.

Memoisation

We introduce a memoisation mechanism so that the system recognizes whether a
given term has already been normalised before and immediately replaces its multi-
ple occurrences with the already calculated normalised form.

You have to be aware that memoisation can improve performance a lot or even
make some mistakenly exponential algorithms run in polynomial time, but memo-
ising everything you encounter would take too much memory and decrease perfor-
mance due to continuous hashtable lookups. Current implementation uses a heuris-
tic to cope with this problem. Below is a rough sketch of a solution that we might
implement in the future.

First of all we have to count the number of rewriting and memory lookup steps
that were necessary to normalise a given term. When the number of steps is small
we should not remember the result. This additionally has to depend on the linearity
of the rewrite rule that was used — if the rule is non-linear then only a small number
of steps can be allowed without normalisation, but if the rule is linear then we can
allow quite a few steps. Linearity measurement has to take care of small constants
in one parameter, since if it is the only non-linear thing then perhaps we do not need
to memoise.

To make the above more precise we suggest the following strategy. We can dis-
tinguish three kinds of rules — linear ones, ones that are not linear but the size of
non-linearity is 1 (e.g. map, exists and all other that are linear but for a function
argument) and the other — higher non-linear ones. For each kind we should have
a constant and if the number of rewriting steps done without memoisation exceeds
the constant then we should memoise.

The additional possible improvement for memoisation is counting the hit-count of
our cache (memoised stuff) and when some bound is reached we should reclaim all
cache that has not been hit. At such point we can as well increase the numbers of
rewriting steps done without memoisation, so that by long computations memory
usage does not grow too fast.

Of course additionally memoisation needs to be customised. There should be
a built-in function memoise handler [function name as string] which would re-
turn a handler — function that handles memoisation for the given name. The handler
should take as arguments the term that is just being rewritten and the number of
steps that elapsed and return a ternary truth value — true meaning that we should
memoise, false meaning that we should not and unknown meaning that the default
system strategy should be applied. We should then recognise if a constant true or
false or unknown value is set and then be able to use is efficiently. This will allow
fast and efficient switching on and off memoisation for selected functions.
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2.6 Parser

2.6.1 Lexer

The lexer splits a given input string in such way that white spaces serve as delimiters
and do not appear on the resulting list of tokens, and non-alphanumeric characters
become separate tokens of length one. UTF starting characters (ASCII code above
127) are treated in the same way as alphanumeric ones.

There is one exception to this rule. If the lexer encounters a string " whatever "
then it does not split it unless the first quote is directly prefixed by an ampersant.
In such case the ampersant is removed.

You should as well note that the lexer performs standard XML syntax conversion
for ampersant, quote, apostrophe and < and > at the start, so for example &apos; is
read as a single ’ token and &amp;"::":&:" is finally represented as " : : " :&: ".

Additionally in the end if the first word starts with an upper-case letter but it is
not all upper-case then the first letter is changed to lower-case. The first word is
defined as the first split string that is not an apostrophe, so ”Book will be read as
”book.

2.6.2 Definition of the Parser

Let K be the set of all nonempty finite sequences of tokens (interpreted as all pos-
sible results of lexing an input string). Let T be the set of all typed terms. Let S be
a set of syntax definitions. We will define the parser by an inductive construction of
the relation P ⊂ K × T such that for every (k, t) ∈ K × T it holds that (k, t) ∈ P if and
only if the term t is a correct result of parsing the sequence of tokens k by using
syntax definitions from the set S. Such a t need not be unique.

For the definition of the parser we need a special type string ∈ G and a function
code_string which takes a string and returns a typed term of type string. This
function establishes a one-to-one correspondence between the set of all strings and
the set of all terms of type string. It is a way of coding strings as terms.

Additionally, we need a special constructor term_type_cons_name and a special
function code_list which takes a list of typed terms (possibly empty) and returns a
typed term which uniquely encodes this list of terms.

The relation P is defined as the smallest set satisfying the following three condi-
tions:

(1) If k = (k1, . . . , kN) is a nonempty sequence of tokens,
t is a typed term of height one,
and (a, b, c) is a syntax definition such that

(i) a /= type and t = head()
(ii) GeneratedName(a, b, c) = head
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(iii) if head is a term variable then vtype(head) = c

(iv) b = (a1, . . . , aN) = k

then (k, t) ∈ P.

(2) If k = (k1, . . . , kN) is a nonempty sequence of tokens,
t is a typed term, and (a, b, c) is a syntax definition such that

(i) a = type and
t = term_type_cons_name(code_string(head),code_list([ ]))

(ii) GeneratedName(a, b, c) = head

(iii) if head is a term variable then vtype(head) = c

(iv) b = (a1, . . . , aN) = k

(3) If k = (k1, . . . , kN) is a nonempty sequence of tokens,
t is a typed term, and (a, b, c) is a syntax definition such that

(i) if a /= type then t = head(t1, . . . , tM)
(ii) if a = type then

t = term_type_cons_name(code_string(head),code_list([t1, . . . , tM]))
(iii) GeneratedName(a, b, c) = head

(iv) if head is a term variable then vtype(head) = c

(v) b = (a1, . . . , aK), where M ≤ K ≤ N and each aj is either a string or a type

(vi) there exist positive integers i1, . . . , iK and r1, . . . , rK such that
ij ≤ rj for all 1 ≤ j ≤ K,
rj < ij+1 for all 1 ≤ j < K, and
(1, 2, . . . , N) = (i1, . . . , r1, i2, . . . , r2, i3, . . . , r3, . . . . . . , iK, . . . , rK)

(vii) there exists a function α which is an increasing bijection from the set of all
those j’s such that aj is a type to the set {1, 2, . . . , M}

(viii) if aj is a string then ij = rj and aj = kij

(ix) if aj is the string type (that is aj = string ∈ G)
then ij = rj and tα(j) = code_string(kij)

(x) if aj is a type other than string then ((kij , . . . , krj), tα(j)) ∈ P

and TermType(tα(j)) unifies with aj

then (k, t) ∈ P.

In practice, before we start parsing, we may filter the set of currently declared
syntax definitions so that we only keep those which might be used and discard those
which cannot be used.
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2.6.3 Parsing Algorithm

We use a chart-based bottom-up parsing algorithm very similar to the one for context-
free grammars (where types play the role of non-terminals). The additional step is
checking if a resulting term can be well-typed and what is the corresponding type
reconstruction. This is done each time when a syntax definition is fully applied to a
sequence. You can refer to the article Functional Pearls: Functional Chart Parsing
of Context Free Grammars by Peter Ljunglöf to read about chart-based parsing.

2.6.4 Disambiguation after Parsing

After parsing it might happen that there are multiple results and we have to use a
mechanism for disambiguation to choose one of them.

First of all, if we have two distinct terms u and v as parsing results such that u
matches v and v does not match u (= u is effectively more general than v) then we
remove the less general v from consideration — this is the first stage of disambigua-
tion.

Secondly, we use a user-defined function parse preferred to which takes two
terms t1, t2 and returns 1,−1, 0 when respectively the first term is better, the second
term is better or the terms cannot be compared. With the help of this function we
create a comparison matrix for the results of parsing and we filter out all the results
for which there is a better one.

The preference function is not built into the system. It is entirely defined in the
library. Moreover, it is continually redefined by the user who writes his own code
and can add new rules to this function, for example by using a macro like see (x ∗
y)+ z preferred to x ∗ (y + z).
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3.1 UCT Game Playing Algorithm

When playing a game, players need to decide what their next move is. To represent
the preferences of each player, or rather her expectations about the outcome after
each step, we use evaluation games. Intuitively, an evaluation game is a statistical
model used by the player to assess the state after each move and to choose the next
action. Formally, an evaluation game E for G is just any structure rewriting game1

with the same number of players and with extended signature. For each relation
R and function f used in G we have two symbols in E: R and Rold, respectively f
and fold.

To explain how evaluation games are used, imagine that players made a concur-
rent move in G from A to B in which each player applied his rule Li →si Ri to certain
matches. We construct a structure C representing what happened in the move as
follows. The universe of C is the universe of B and all relations R and functions f
are as in B. Further, for each b ∈ B let us define the corresponding element a ∈ A
as either b, if b ∈ A, or as si(b), if b was in some right-hand side structure Ri and
replaced a. The relation Rold contains the tuples b which replaced some tuple a ∈ RA.
The function fold(b) is equal to fold(a) (evaluated in A) if b replaced a and it is 0 if b
did not replace any element. We use C as the starting structure for the evaluation
game E . This game is then played (as described below) and the outcome of E is used
as an assessment of the move C for each player.

As you can see above, the evaluation game E is used to predict the outcomes of
the game G. This can be done in many ways: In one basic case, no player moves
in the game E — there are only probabilistic nodes and thus E represents just a
probabilistic belief about the outcomes. In another basic case, E returns a single
value — this should be used if the player is sure how to assess a state, e.g. if
the game ends there. In the next section we will construct evaluation games in
which players make only trivial moves depending on certain formulas — in such
case E represents a more complex probability distribution over possible payoffs.
In general, E can be an intricate game representing the judgment process of the
player. In particular, note that we can use G itself for E , but then without evaluation
games any more to avoid circularity. This corresponds to a player simulating the
game itself as a method to evaluate a state.

1In fact it is not a single game E but one for each vertex of G.
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We know how to use an evaluation game E to get a payoff vector (one for each
player) denoting the expected outcome of a move. These predicted outcomes are
used to choose the action of player i as follows. We consider all discrete actions
of each player and construct a matrix defining a normal-form game in this way.
Since we approximate ODEs by polynomials symbolically, we keep the continuous
parameters playing E and get the payoff as a piecewise polynomial function of the
parameters. This allows to solve the normal-form game and choose the parameters
optimally. To make a decision in this game we use the concept of iterated regret
minimization (over pure strategies), well explained in [16].

The regret of an action of one player when the actions of the other players are
fixed is the difference between the payoff of this action and the optimal one. A strat-
egy minimizes regret if it minimizes the maximum regret over all tuples of actions
of the other players. We iteratively remove all actions which do not minimize regret,
for all players, and finally pick one of the remaining actions at random. Note that
for turn-based games this corresponds simply to choosing the action which promises
the best payoff. In case no evaluation game is given, we simply pick an action ran-
domly and the parameters uniformly, which is the same as described above if the
evaluation game E always gives outcome 0.

With the method to select actions described above we can already play the game
G in the following basic way: Let all players choose an action as described and
play it. While we will use this basic strategy extensively, note that, in case of poor
evaluation games, playing G like this would normally result in low payoffs. One way
to improve them is the Monte-Carlo method: Play the game in the basic way K times
and, from the first actions in these K plays, choose the one that gave the biggest
average payoff. Already this simple method improves the play considerably in many
cases. To get an even better improvement we simultaneously construct the UCT
tree, which keeps track of certain moves and associated confidence bounds during
these K plays.

A node in the UCT tree consists of a position in the game G and a list of payoffs
of the plays that went through this position. We denote by n(v) the number of plays
that went through v, by µ(v) the vector of average payoffs (for each of the players)

and by σ(v) the vector of square roots of variances, i.e. σi =
√
∑pi

(p2
i )/n − µ2

i if pi
are the recorded payoffs for player i. First, the UCT tree has just one node, the
current position, with an empty set of payoffs. For each of the next K iterations
the construction of the tree proceeds as follows. We start a new play from the root
of the tree. If we are in an internal node v in the tree, i.e. in one which already
has children, then we play a regret minimizing strategy (as discussed above) in a
normal-form game with payoff matrix given by the vectors µ′(w) defined as follows.

Let σ′i (w) = σi(w)2 + ∆ ⋅
√

2 ln(n(v))
n(w) be the upper confidence bound on variance and

to scale it let si(w) = min(1/4, σ′i (w)/∆), where ∆ denotes the payoff range, i.e. the
difference between maximum and minimum possible payoff. We set µ′i(w) = µi(w)+
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Evaluation Game:

¬∃x(P(x)∧ M(x))

∃x(P(x)∧ M(x))

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

0.4
0.4

0.2

0.7
0.2

0.1

UCT Tree:

Figure 3.1: Evaluation game for tic-tac-toe and a UCT tree.

C ⋅ ∆ ⋅
√

ln(n(v))
n(w) si(w). The parameter C balances exploration and exploitation and

the thesis [9] gives excellent motivation for precisely this formula (UCB1-TUNED).
Note that, for turn-based games, when player i moves we select the child w which
maximizes µ′i(w). When we arrive in a leaf of the UCT tree, we first add all possible
moves as its children u and play the evaluation game a few (E) times in each of
them. The initial value of µ and σ is computed from these evaluation plays and we
set n(u) = E′ (1 ≤ E′ ≤ E). After the children are added, we select one and continue
to play with the very basic strategy: Only the evaluation game is used to choose
actions and the UCT tree is not extended any more in this iteration. When this play
of G is finished, we add the received payoff to the list of recorded payoffs of each
node on the played path and recalculate µ and σ. Observe that in each of the K
iterations exactly one leaf of the UCT tree is extended and all possible moves from
there are added. After the K-th iteration is finished, the action in the root of the
UCT tree is chosen taking into account only the values µ of its children.

Example. Consider the model of tic-tac-toe presented previously and let the for-
mula M(x) = ∃y C(x, y) ∧ ∃y C(y, x) ∧ ∃y R(x, y) ∧ ∃y R(y, x) express that x is the
position in the middle of the board. In Figure 3.1 we depicted a simple evaluation
game, which should be interpreted as follows. If the first player made a move to the
middle position, expressed by ∃x(P(x) ∧ M(x)), then the probability that the first
player will win, i.e. of payoff vector (1, 0), is 0.7. The probability that the second
player will win is 0.1 and a draw occurs with probability 0.2. On the other hand, if
the first player did not move to the middle, then the respective probabilities are 0.4,
0.2 and 0.4. When the construction of the UCT tree starts, a payoff vector is assigned
to the state after each of the 9 possible moves of the first player. The payoff vector
is one of (1, 0), (0, 1) and (0, 0) and is chosen randomly with probabilities 0.7, 0.1, 0.2
for the middle node in the UCT tree and with probabilities 0.4, 0.2, 0.4 for all other 8
nodes, as prescribed by the evaluation game. The first iteration does not expand the
UCT tree any further. In the second iteration, if the middle node is chosen to play,
then its 8 children will be added to the UCT tree. The play in this iteration continues
from one of those children, as depicted by the snaked line in Figure 3.1.
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3.2 Type Normal Form

To derive evaluation heuristics from payoff terms, we first have to introduce a nor-
mal form of formulas which we exploit later in the construction. This normal form
is in a sense a converse to the prenex normal form (PNF), because the quantifiers
are pushed as deep inside the formula as possible. A very similar normal form has
been used recently in a different context [8]. For a set of formulas Φ let us de-
note by B+(Φ) all positive Boolean combinations of formulas from Φ, i.e. define
B+(Φ) = Φ ∣ B+(Φ)∨B+(Φ) ∣ B+(Φ)∧B+(Φ).

Definition 1. A formula is in TNF if and only if it is a positive Boolean combination
of formulas of the following form

τ = Ri(x) ∣ ¬Ri(x) ∣ x = y ∣ x ≠ y ∣ ∃xB+(τ) ∣ ∀xB+(τ)

satisfying the following crucial constraint: in ∃xB+({τi}) and ∀xB+({τi}) the free
variables of each τi appearing in the Boolean combination must contain x.

We claim that for each formula ϕ there exists an equivalent formula ψ in TNF, and
the procedure TNF(ϕ) computes ψ given ϕ in negation normal form. Note that it
uses sub-procedures DNF and CNF which, given a Boolean combination of formulas,
convert it to disjunctive or respectively conjunctive normal form.

As an example, consider ϕ = ∃x(P(x)∧ (Q(y)∨ R(x))); This formula is not in TNF
as Q(y) appears under ∃x, and TNF(ϕ) = (Q(y)∧∃xP(x))∨∃x(P(x)∧ R(x)).

Procedure TNF(ϕ)

case ϕ is a literal return ϕ;
case ϕ = ϕ1 ∨ ϕ2 return TNF(ϕ1)∨ TNF(ϕ2);
case ϕ = ϕ1 ∧ ϕ2 return TNF(ϕ1)∧ TNF(ϕ2);
case ϕ = ∃xψ

Let DNF(TNF(ψ)) = ⋁i(⋀j ψi
j)

and Fi = {j ∣ x ∈ free(ψi
j)};

return ⋁i (⋀j/∈Fi
ψi

j ∧∃x(⋀j∈Fi ψi
j));

case ϕ = ∀xψ

Let CNF(TNF(ψ)) = ⋀i(⋁j ψi
j)

and Fi = {j ∣ x ∈ free(ψi
j)};

return ⋀i (⋁j/∈Fi
ψi

j ∨∀x(⋁j∈Fi ψi
j));

Theorem 2. TNF(ϕ) is equivalent to ϕ and in TNF.

The proof of the above theorem is a simple argument by induction on the structure
of the formula, so we omit it here. Instead, let us give an example which explains
why it is useful to compute TNF for the goal formulas.
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Example 3. As already defined above, the payoff in Tic-tac-toe is given by ∃x, y, z(P(x)∧
P(y) ∧ P(z) ∧ L(x, y, z)). To simplify this example, let us consider the payoff given
only by row and column triples, i.e.

ϕ = ∃x, y, z(P(x)∧ P(y)∧ P(z)∧
((R(x, y)∧ R(y, z))∨ (C(x, y)∧C(y, z)))).

This formula is not in TNF and the DNF of the quantified part has the form ϕ1 ∨ ϕ2,
where

ϕ1 = P(x)∧ P(y)∧ P(z)∧ R(x, y)∧ R(y, z),

ϕ2 = P(x)∧ P(y)∧ P(z)∧C(x, y)∧C(y, z).

The procedure TNF must now choose the variable to first split on (this is discussed
in the next section) and pushes the quantifiers inside, resulting in TNF(ϕ) = ψ1 ∨ ψ2

with

ψ1 = ∃x(P(x)∧∃y(P(y)∧ R(x, y)∧∃z(P(z)∧ R(y, z)))),

ψ2 = ∃x(P(x)∧∃y(P(y)∧C(x, y)∧∃z(P(z)∧C(y, z)))).

In spirit, the TNF formula is thus more “step-by-step” than the goal formula we
started with, and we exploit this to generate heuristics for evaluating positions be-
low.

3.3 Heuristics from Existential Formulas

In this section, we present one method to generate a heuristic from an existential
goal formula. As a first important step, we divide all relations appearing in the
signature in our game into two sorts, fluents and stable relations. A relation is called
stable if it is not changed by any of the structure rewriting rules which appear as
possible moves, all other relations are fluent. We detect stable relations by a simple
syntactic analysis of structure rewriting rules, i.e. we check which relations from
the left-hand side remain unchanged on the right-hand side of the rule. It is a big
advantage of our formalism in comparison to GDL that stable relations (such as row
and column relations used to represent the board) can so easily be separated from
the fluents.

After detecting the fluents, our first step in generating the heuristic is to compute
the TNF of the goal formula. As mentioned in the example above, there is certain
freedom in the TNF procedure as to which quantified variable is to be resolved first.
We use fluents to decide this — a variable which appears in a fluent will be resolved
before all other variables which do not appear in any fluent literal (we choose arbi-
trarily in the remaining cases).
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After the TNF has been computed, we change each sequence of existential quanti-
fiers over conjunctions into a sum, counting how many steps towards satisfying the
whole conjunction have been made. Let us fix a factor α < 1 which we will discuss
later. Our algorithm then changes a formula in the following way.

∃x1(ϑ1(x1)∧∃x2(ϑ1(x2, x1)∧⋯∧∃xn(ϑn(xn, xi))⋯))

↝

∑
x1∣ϑ1(x1)

(αn−1 + ∑
x2∣ϑ2(x2,x1)

(αn−2 + ⋯(α + ∑
xn ∣ϑn(xn,xi)

1)⋯))

The sub-formulas ϑi(xi, x) are in this case conjunctions of literals or formulas
which contain universal quantifiers. The factor α defines how much more making
each next step is valued over the previous one. When a formula contains disjunc-
tions, we use the above schema recursively and sum the terms generated for each
disjunct.

To compute a heuristic for evaluating positions from a payoff term, which is a real-
valued expression in the logic defined above, we simply substitute all characteristic
functions, i.e. expressions of the form χ[ϕ], by the sum generated for ϕ as described
above.

Example 4. Consider the TNF of the simplified goal formula for Tic-tac-toe pre-
sented in the previous example and let α = 1

4 . Since the TNF of the goal formula for
one player has the form ψ1 ∨ψ2, we generate the following sums:

s1 = ∑
x∣P(x)

(1
8
+ ∑

y∣P(y)∧R(x,y)
(1

4
+ ∑

z∣P(z)∧R(y,z)
1)),

s2 = ∑
x∣P(x)

(1
8
+ ∑

y∣P(y)∧C(x,y)
(1

4
+ ∑

z∣P(z)∧C(y,z)
1)).

Since the payoff is defined by χ[ϕ]−χ[ϕ′], where ϕ′ is the goal formula for the other
player, i.e. with Q in place of P, the total generated heuristic has the form

s1 + s2 − s′1 − s′2,

where s′1 and s′2 are as s1 and s2 but with P replaced by Q.

3.4 Finding Existential Descriptions

The method described above is effective if the TNF of the goal formulas has a rich
structure of existential quantifiers. But this is not always the case, e.g. in Break-
through the goal formula for white has the form ∃x (W(x) ∧ ¬∃y C(x, y)), because
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¬∃y C(x, y) describes the last row which the player is supposed to reach. The gen-
eral question which presents itself in this case is how, given an arbitrary relation
R(x) (as the last row above), can one construct an existential formula describing
this relation. In this section, we present one method which turned out to yield use-
ful formulas at least for common board games.

First of all, let us remark that the construction we present will be done only for
relations defined by formulas which do not contain fluents. Thus, we can assume
that the relation does not change during the game and we use the starting structure
in the construction of the existential formula.

Our construction keeps a set C of conjunctions of stable literals. We say that a
subset {ϕ1, . . . , ϕn} ⊆ C describes a relation Q(x) in A if and only if Q is equivalent
in A to the existentially quantified disjunction of ϕi’s, i.e. if

A ⊧ Q(x) ⇐⇒ A ⊧⋁
i
(∃yi ϕi),

where yi are all free variables of ϕi except for x.
Our procedure extends the conjunctions from C with new literals until a subset

which describes Q is found. These extensions can in principle be done in any order,
but to obtain compact descriptions in reasonable time we perform them in a greedy
fashion. The conjunctions are ordered by their hit-rank, defined as

hit-rankA,Q(x)(ϕ) = ∣{x ∈ Q ∣ A ⊧ ∃yϕ(x)}∣
∣{x ∣ A ⊧ ∃yϕ(x)}∣ ,

where again y = FreeVar(ϕ)∖ x. Intuitively, the hit-rank is the ratio of the tuples from
Q which satisfy (existentially quantified) ϕ to the number of all such tuples. Thus,
the hit-rank is 1 if ϕ describes Q and we set the hit-rank to 0 if ϕ is not satisfiable in
A. We define the rankA,Q(ϕ, R(y)) as the maximum of the hit-rankA,Q(ϕ∧R(y)) and
the hit-rankA,Q(ϕ ∧¬R(y)). The complete procedure is summarized below.

Procedure ExistentialDescription(A, Q)

C ←Ð {⊺}
while no subset of C describes Q(x) in A do

for a stable relation R(y), conjunction ϕ ∈ C
with maximal rankA,Q(ϕ, R(y)) do

C ←Ð (C ∖ {ϕ})∪ {ϕ ∧ R(y), ϕ ∧¬R(y)}
end

end

Since it is not always possible to find an existential description of a relation, let us
remark that we stop the procedure if no description with a fixed number of literals
is found. We also use a tree-like data structure for C to check the existence of a
describing subset efficiently.
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Example 5. As mentioned before, the last row on the board is defined by the rela-
tion Q(x) = ¬∃y C(x, y). Assume that we search for an existential description of this
relation on a board with only the binary row and column relations (R and C) being
stable, as in Figure 1.2. Since adding a row literal will not change the hit-rank, our
construction will be adding column literals one after another and will finally arrive,
on an 3×3 board, at the following existential description: ∃y1, y2(C(y1, y2)∧C(y2, x)).
Using such formula, the heuristic constructed in the previous section can count the
number of steps needed to reach the last row for each pawn, which is a important
e.g. in Breakthrough.

3.5 Alternative Heuristics with Rule Conditions

The algorithm presented above is only one method to derive heuristics, and it uses
only the payoff terms. In this section we present an alternative method, which
is simpler and uses also the rewriting rules and their constraints. This simpler
technique yields good heuristics only for games in which moves are monotone and
relatively free, e.g. for Connect5.

Existential formulas are again the preferred input for the procedure, but this time
we put them in prenex normal form at the start. As before, all universally quantified
formulas are either treated as atomic relations or expanded, as discussed above.
The Boolean combination under the existential quantifiers is then put in DNF and,
in each conjunction in the DNF, we separate fluents from stable relations. After such
preprocessing, the formula has the following form:

∃x ((ϑ1(x)∧ψ1(x)) ∨ ⋯ ∨ (ϑn(x)∧ψn(x))),

where each ϑi(x) is a conjunction of fluents and each ψi(x) is a conjunction of stable
literals.

To construct the heuristic, we will retain the stable sub-formulas ψi(x) but change
the fluent ones ϑi(x) from conjunctions to sums. Formally, if ϑi(x) = F1(x)∧⋯∧ Fk(x)
then we define si(x) = χ[F1(x)] +⋯+ χ[Fk(x)], and let δi(x) = F1(x) ∨⋯∨ Fk(x) be a
formula checking if the sum si(x) > 0. The guard for our heuristic is defined as

γ(x) = (ψ1(x) ∨ ⋯ ∨ ψn(x)) ∧ (δ1(x) ∨ ⋯ ∨ δn(x))

and the heuristic with parameter n by

∑
x∣γ(x)∧move(x)

(s1(x)+⋯+ sn(x))n
.

The additional formula move(x) is used to guarantee, that at each element matched
to one of the variables x it is still possible to make a move. This is done by converting
the rewrite rule into a formula with free variables corresponding to the elements of
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the left-hand side structure, removing all the fluents Fi from above if these appear
negated, and quantifying existentially if a new variable (not in x) is created in the
process. The following example shows how the procedure is applied for Tic-tac-toe.

Example 6. For Tic-tac-toe simplified as before (no diagonals), the goal formula in
PNF and DNF reads:

∃x, y, z ( (P(x) ∧ P(y) ∧ P(z) ∧ R(x, y) ∧ R(y, z))
∨ (P(x) ∧ P(y) ∧ P(z) ∧ C(x, y) ∧ C(y, z))).

The resulting guard is thus, after simplification,

γ(x, y, z) = ( (R(x, y) ∧ R(y, z)) ∨ (C(x, y) ∧ C(y, z)))
∧ (P(x) ∨ P(y) ∨ P(z)).

Since the structure rewriting rule for the move has only one element, say u, on its
left-hand side, and τe = {P, Q} for this rule, the formula for the left-hand side reads
l(u) = ¬P(u)∧¬Q(u). Because P appears as a fluent in γ we remove all occurrences
of ¬P from l and are then left with move(u) = ¬Q(u). Since we require that a move
is possible from all variables, the derived heuristic for one player with power 4 has
the form

h = ∑
x,y,z ∣ γ(x,y,z)∧¬Q(x)∧¬Q(y)∧¬Q(z)

(χ[P(x)]+ χ[P(y)]+ χ[P(z)])4.

Since the payoff expression is χ[ϕ]−χ[ϕ′], where ϕ′ is the goal formula for the other
player, we use h − h′ as the final heuristic to evaluate positions.

3.6 Solver Techniques

We use a SAT solver (from The Decision Procedure Toolkit, DPT) to operate on sym-
bolic representations of MSO variables. We decided in favor of CNF representation
instead of the more standard BDD approach as it seems to scale in a more consistent
way.

For handling real arithmetic, we implement a quantifier elimination procedure
based on Muchnik’s proof. It is not as efficient as CAD (cylindrical algebraic decom-
position) but works very consistently for many cases.

The main formula optimization is just performing the TNF, later we only push
predicates to the front.
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In this chapter we present a method for constructing formulas that separate sets of
structures from such sets given as input, and we describe how games can be learned
from example plays using this method.

4.1 State Representation and Visual Processing

We represent the state of the game in a fixed moment of time by a finite relational
structure, which is the same as a labeled directed hypergraph. Formally, a relational
structure A = (A, R1, . . . , Rl) is composed of a universe A (denoted by the same letter
in straight font) and a number of relations. We write ri for the arity of the relation
Ri, so Ri ⊆ Ari . The signature of A is the set of symbols {R1, . . . , Rl}.

Game boards usually have a natural grid-like structure, and to represent them we
use relational structures with four binary relations: R for the next-in-a-row relation,
C for the next-in-a-column relation, and Da and Db for the two diagonals. The com-
plete structure for the empty 3 × 3 grid, with 9 elements, is depicted in Figure 4.1.
We use this structure to represent the starting position in Tic-Tac-Toe, and larger
boards are represented in an analogous way. To mark pieces on the board, we use
unary relations (predicates), e.g. a predicate Q for cross and P for circle. In all
our experiments we represent game boards in exactly this way, but our learning al-
gorithms work for arbitrary finite relational structures, thus also for more complex
scenes and settings.

In the first step, our system reconstructs a sequence of relational structures, rep-
resenting successive positions in the game, from each input video. We use off-the-
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Figure 4.1: Relational representation of a 3× 3 grid.
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shelf image processing methods in this step, and, as it is not the focus of this work,
we describe them only briefly. At the start, we apply the Canny edge detector [2] to
the input video stream and use the Hough transform to detect lines in the standard
way [4]. We try a few parameters for these operations and use the results to identify
the size and position of the board in the frame and to detect the edges of pieces. We
mark squares with no edges of pieces as empty, and for the rest we calculate the
aggregate color within the edges of the potential piece, adjusted for the aggregate
color of all pieces. Finally, based on this adjusted color, we assign the piece to one
of the clusters (we used red, blue, yellow and black in the experiments) and mark
the grid element with the appropriate predicate in the resulting structure. To deter-
mine when a move is made, we use a simple heuristic for hand detection based on
the edges detected in the corners of the board.

The above methods for hand and board detection are not perfect and generate
false board positions, especially during hand movement. To improve accuracy, we
use the fact that only few predicates change in each move. We mark each board with
more than two changed predicates as possibly-wrong. A sequence of frames with
either a detected hand or a possibly-wrong board represents changes made on the
board and is ignored, as we are interested only in the legal positions between such
sequences. Among the frames between such sequences, we use majority voting to
determine the one configuration of the board all these frames represent. The whole
procedure was implemented using the OpenCV library for Canny edge detection and
Hough transform and turned out to be sufficient to correctly reconstruct the plays
of all games in our experiments.

4.2 Logic and Descriptive Complexity

Before we show how to derive interesting patterns from the sequences of structures
reconstructed by the above procedure, we need to introduce some notions from
descriptive complexity theory. This section presents the background necessary for
this paper, refer to Chapter 3 of [12] for a more complete introduction.

Recall that formulas of first-order logic over a relational signature {R1, . . . , Rl} and
with variables x1, x2, . . . ranging over elements of the structure have the form ϕ ∶=

Ri(x1, . . . , xri) ∣ xi = xj ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ϕ ∧ ϕ ∣ ∃xi ϕ ∣ ∀xi ϕ,

and their semantics, given an assignment of the variables xi to elements ei of the
structure, is defined in the natural way, e.g. ∃x1R(x1, x2) holds for an assignment
x2 → e2 in a structure A if, and only if, there exists an element e1 such that (e1, e2) is
in the relation R in A. Notice that, for the grid structure presented in Figure 4.1, the
formula ¬∃y C(y, x) holds exactly for elements from the bottom row. This formula,
or the equivalent one ∀y¬C(y, x) in negation normal form, is a part of the winning
condition in games where the goal of one of the players is to reach the bottom row.
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4 Formula and Game Induction

First-order logic has several drawbacks from the computational point of view.
First of all, it is not expressive enough to describe many relations that can easily
be computed. This limitation stems from locality of first-order formulas. Intuitively,
assume that a neighborhood of an element e in a structure consists of all elements
connected to e by any of the relations, and a radius r neighborhood allows r-step
connections. Then, a first-order formula can only detect whether certain patterns
are present in the structure or not in neighborhoods of a fixed radius. This prop-
erty, made precise in the theorems of Gaifman [7] and Hanf [17], implies that many
patterns cannot be defined in FO.

Example 7. In our representation of the board (Figure 4.1) we allowed only the
next-in-a-row relation R. Can we check that two elements are in the same row, but
not necessarily next to each other? Indeed, for the 3 × 3 grid the formula R(x, y) ∨
∃z(R(x, z) ∧ R(z, y)) checks that x is left of y on the same row. But already a more
complex formula is needed for a 4×4 grid, and the locality theorems imply that there
is no FO formula expressing this property on all grids.

To remove this limitation of first-order logic, one extends FO by the transitive
closure operator that allows to write formulas of the form TC x, y ϕ(x, y), which
stands for the transitive and reflexive closure of the relation ϕ(x, y). For exam-
ple, TC x, y R(x, y) in our game board representation defines the relation “x is left
of y in the same row” we considered above. In this work, we use a more precise
operator that specifies exactly the number of steps to take in the transitive closure.
Thus, we will write formulas of the form

TCm x, y ϕ(x, y),

for any first-order formula ϕ, and the semantics of such a formula is the set of all
pairs (x, y) such that one can go from x to y in exactly m steps of the relation defined
by ϕ(x, y). For example, the formula TC2 x, y R(x, y) is equivalent to the first-order
formula ∃z(R(x, z)∧ R(z, y)).

Adding the transitive closure operator removes some limitations of FO, but how
can we know what other problems remain? To answer this question, one can com-
pare the expressive power of the resulting logic with computational complexity
classes. For example, is every polynomial-time computable relation definable in the
transitive closure logic, or some other extension of FO? Such questions are stud-
ied in descriptive complexity theory, and here we recall the most prominent known
correspondences. The oldest result [6] shows that the class NP is captured by ex-
istential second-order logic. More practically, polynomial-time computations are
captured by the least fixed-point logic (LFP) when a linear order relation is present
[18, 23]. The requirement of a linear order can be weakened when a counting mech-
anism is added to the logic, and LFP with counting captures P on many classes of
structures, such as grids, planar graphs [13] and all classes that exclude a fixed mi-
nor [15]. Finally, while LFP is more expressive than the transitive closure logic (TC)
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we mentioned, TC captures all problems solvable in non-deterministic logarithmic
space on ordered structures [19] and also on only locally (two-way) ordered graphs
[5].

The above results show what is the complexity of the patterns one can define in
a logic, but they give little information about the complexity of learning formulas.
Two most natural metrics for a formula are its size and its quantifier rank, i.e. the
number of nested quantifiers inside a formula. For any logic L, one can thus state
the following problem: Given two finite relational structures, find an L-formula of
minimal quantifier rank (or size) distinguishing these structures. Unluckily, already
for first-order logic the above problem is hard, namely PSPACE-complete [21]. But
there is a natural restriction of first-order logic, the k-variable fragment FOk, for
which this problem becomes solvable in polynomial time [14].

The k-variable fragment of FO consists of all formulas that use only the variables
x1, . . . , xk, both as free ones and under quantifiers. Note that variables under quan-
tifiers can be renamed, e.g. the formula ∃x2(R(x1, x2) ∧ ∃x1C(x2, x1)) belongs to
the 2-variable fragment. When restricted to the k-variable fragment, one must ask
whether a formula distinguishing two given structures exists at all in this fragment.
Maybe the pattern of interest requires more than k variables? Luckily, for many
classes of structures, a constant number of variables is sufficient. These include
planar graphs, classes of graphs excluding a minor, and several other classes, see
[22] for a survey. The structures we use to represent game boards are planar, and
therefore also fall into this category. Let us stress that the restriction to a low num-
ber of variables is one key reason why our learning algorithms are efficient, and
the above results imply that this will still be the case for more complex structures.
Thus, we conjecture that the methods we present below will generalize from board
games to various other situations.

4.3 Distinguishing Relational Structures

In this section we present our main learning procedure that, given two sets of struc-
tures, the positive and the negative ones, returns a formula ϕ that holds on all posi-
tive structures and on none of the negative ones. As motivated above, the returned
formula belongs to the k-variable fragment of first-order logic with the TCm oper-
ator. The formula uses the minimal number of variables k, has minimal quantifier
rank among k-variable formulas distinguishing the two sets of structures, belongs to
the guarded fragment if possible, and is existential if possible (we will explain these
notions and illustrate why they help in learning games later). The procedure runs
in polynomial time if each input structure belongs to one of the classes mentioned
above, in particular always when the input structures are planar. An important
part of the procedure is the computation of L-types of tuples of elements from the
structures.
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Definition 8. The L-type of a tuple a in a structure A is the subset of formulas of L,
with as many free variables as ∣a∣, that are satisfied by a in A, i.e.

L-type(A, a) = {ϕ(x) ∈ L ∣ ∣x∣ = ∣a∣ and A ⊧ ϕ(a)}.

The set described above is most often infinite for trivial reasons, e.g. it might
contain formulas P(x), P(x) ∧ P(x), P(x) ∧ P(x) ∧ P(x), and so on – something that
could be described just by P(x). Since in many cases there exists one formula
describing this set, we will often abuse the terminology and say that the L-type of a
in A is a single formula τ ∈ L, denoted τ = tpL(A, a), such that:

A ⊧ τ(a) and for all ϕ ∈ L-type(A, a) holds τ(x)⇒ ϕ(x).

Note that, in principle, such a formula τ might not exist in the logic L. But it does
exist for fragments of FO that we consider here, e.g. for bounded quantifier rank,
bounded number of variables, and for the guarded fragment.

4.3.1 Computing first-order types

For a fixed number of variables k and a bound n on the quantifier rank, let us denote
by Ln,k the set of all first-order formulas using only the variables x1, . . . , xk, i.e. from
the k-variable fragment, and with quantifier rank at most n. Given a structure A and
a tuple a of length k, we will compute the Ln,k-type of a inductively and denote the
result tpn,k(A, a).

For n = 0, the formula tpn,k(A, a) is simply a conjunction of all literals satisfied
by a in A, which we compute exhaustively. These are often long formulas with few
positive atoms, e.g. in the structure in Figure 4.1 the 0, 2-type of the pair of the
bottom-left element and the central element is

Da(x1, x2)∧¬Da(x1, x1)∧¬Da(x2, x1)∧¬Da(x2, x2)
∧ ⋀

v,w∈{x1,x2}
¬Db(v, w)∧¬C(v, w)∧¬R(v, w).

For n > 0, the type tpn,k(A, a) can be computed inductively, as it is given by the
following formula:

tpn−1,k(A, a)∧ ⋀
i<∣a∣

⎛
⎝
∀xi (⋁

b∈A
tpn−1,k(A, a[ai ← b]))

∧ ⋀
b∈A

∃xi (tpn−1,k(A, a[ai ← b]))
⎞
⎠

,

where a[ai ← b] denotes the tuple a with the i-th element replaced by b. We omit the
proof of correctness of this formula here, as it is very similar to the standard proof
for FO.
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4.3.2 Guarded types for sparse structures

In our procedure, we need to compute the types of all tuples in the structure. Even
for 2-variable tuples on an 8× 8 grid, this means computing the types for 642 = 4096
tuples, which is slow, and for triples on a 19 × 19 grid it is not practical any more
(though one could do it in parallel on multiple machines). But most of these tuples
will be of no use for distinguishing structures because, aside from unary relations,
they all have the same type: not connected by any relation. The structures we use
to represent boards are sparse and thus, in almost all practical cases, at least one
distinguishing tuple will be connected by some binary relations in the structure.
This property has also been studied and exploited in logic – the fragment of first-
order logic that requires tuples to be connected is called the guarded fragment
and it is the main reason why modal and description logics enjoy good algorithmic
properties [11].

Definition 9. The guarded fragment of FO is defined inductively as a syntactic
subset given by the following grammar.

ϕ ∶∶= Ri(x1, . . . , xri) ∣ x = x ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣
∃y(Ri(x, y)∧ ϕ(x, y)) ∣ ∀y(¬Ri(x, y)∨ ϕ(x, y)),

where ϕ(x, y) means that all free variables of ϕ must be included in the set {x}∪{y}.

Example 10. Formulas of modal logic translate to guarded first-order logic formu-
las with two variables. For example, a formula with one free variable x1 expressing
“every C-successor of x1 has an R-successor in which P holds” can be written in the
guarded fragment with two variables as:

∀x2(C(x1, x2)→ ∃x1(R(x2, x1)∧ P(x1))).

Again, for a fixed number of variables k and a bound n on quantifier rank, we
denote by Gn,k the set of all guarded first-order formulas using only the variables
x1, . . . , xk, i.e. from the k-variable fragment, and with quantifier rank at most n.
Given a structure A and the tuple a of length k, we will compute the Gn,k-type of a
inductively and denote the result tpn,k

G (A, a).
For n = 0 we have tp0,k

G (A, a) = tp0,k(A, a) as there is no difference between full and
guarded logic.

For n > 0, the construction is different: Instead of quantifying over one variable,
we find sets x of variables which can be used in a guard, and quantify over those
variables. To this end, we first need to compute all guarded substitutions of the
tuple a. We say that b is a guarded substitution of a if ∣b∣ = ∣a∣ and the following
holds: There exists a subset {b1, . . . , bk} of b such that (b1, . . . , bk) ∈ Ri for some Ri, at
least one bi ∈ a, and on all positions j < ∣b∣ either b[j] = a[j] or b[j] = bi for some i.
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Let now S be the set of all guarded substitutions of a and V the set of all proper
subsets of variables x1, . . . , x∣a∣. For each non-empty set x ∈ V let Gx denote proper
guards for x, i.e. formulas R(x, y) such that {x} = x and y is not empty. For each
such g ∈ Gx let us denote by Sg the subset of S for which the guard g holds, Sg = {b ∈
S ∣ A ⊧ g(b)}. We define the next guarded type for x and g ∈ Gx as

τx,g = ∀x
⎛
⎜
⎝

g → ⋁
b∈Sg

tpn−1,k
G (A, b)

⎞
⎟
⎠

∧ ⋀
b∈Sg

∃x (g ∧ tpn−1,k
G (A, b)) .

Finally, the guarded type tpn,k
G (A, a) is given by

tpn−1,k
G (A, a) ∧ ⋀

x∈V
⋀

g∈Gx

τx,g.

Again, we omit the proof that tpn,k
G is indeed the Gn,k-type, as it follows the above

construction in a standard way.
An even more restricted logic than the n, k guarded fragment is the n, k existential

guarded fragment, denoted EGn,k and defined as all formulas from Gn,k in negation
normal form in which no universal quantifier occurs. The above formulas allow to
compute existential guarded types as well, only the whole universally quantified
part must be removed.

4.3.3 Distinguishing positive and negative structures

Let P be a set of positive structures to be distinguished from the set N of nega-
tive ones. For a fixed logic L, variable number k and quantifier rank n, the Ln,k-
distinguishing procedure proceeds as follows. First, it computes the set N of Ln,k-
types of all tuples in all structures in N. Then, for every structure A ∈ P, it finds an
Ln,k-type τA of some tuple a in A such that τA /∈ N . The formula ϕ = ⋁A∈P τA holds in
each structure in P, because of the corresponding disjunct, and in no structure from
N, because then some τA would belong to N . Therefore ϕ distinguishes P from N.

The Ln,k-distinguishing procedure described above is used iteratively, starting
from the smallest k, for each k from the smallest n, and with fixed n and k starting
from the weakest logic: first the existential guarded fragment, then the full guarded
fragment, and only finally the full k-variable fragment with quantifier rank n. Ad-
ditionally, for each k, after the atomic 0, k-types τ have been computed we check
whether, for some m, the formula TCm x1, x2 τ(x1, x2) distinguishes P from N. This
allows to detect basic transitive relations efficiently. The complete Distinguish
procedure is summarized below.

The above procedure finds formulas distinguishing P from N with minimal number
of variables and minimal quantifier rank, but since the Ln,k-distinguishing procedure
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Procedure Distinguish(P, N)

k ← 1
while FO0,k does not distinguish P from N do

Try to distinguish P from N with TC formulas
for n = 0, . . . , k + 1 do

Try to EGn,k-distinguish P from N
Try to Gn,k-distinguish P from N
Try to FOn,k-distinguish P from N

end
k ← k + 1

end

Figure 4.2: A position winning for white and one not winning.

relies on types, the returned formulas are normally very long and hard to read.
We correct this by changing the Ln,k-distinguishing procedure in the following way.
Instead of returning ϕ = ⋁A∈P τA, we will return ϕmin = ⋁A∈P τmin

A , where τmin
A is

computed as follows. From all types τ1
A, . . . , τl

A which hold for some tuple a in A but
are not in N (computed previously as well), we greedily remove all literals that are
not necessary to distinguish A from N. The formula τmin

A is then the shortest of
the remaining formulas. In our experiments, it usually turned out to be an easily
readable one as well.

4.4 Learning Winning Conditions in Games

The procedure Distinguish described above is already sufficient to learn the win-
ning conditions for both players in the games we experimented with. Consider for
example the game of Breakthrough in which the goal of the white player is to get to
the last row. An example of a winning position is depicted on the left in Figure 4.2,
while the same position without the winning piece is on the right. Let A+ be the
8 × 8-grid structure analogous to the one in Figure 4.1 but representing the board
on the left in Figure 4.2, and let A− represent the board on the right, with white
pieces marked by W and the black ones by B. Running Distinguish({A+},{A−})

60



4 Formula and Game Induction

Figure 4.3: 4 positions winning for yellow and 4 not winning.

results in the formula:

∃x1(W(x1)∧∀x0¬C(x1, x0)),

which expresses that there is a white piece in the last row.
In Figure 4.3, we give another example of 4 positive structures P and 4 negative

structures N, this time representing configurations of a 7× 6 grid corresponding to
winning and not winning positions in Connect4, with Q for yellow. This time, the
procedure Distinguish(P, N) returns

∃x0, x1( TC3 x0, x1 (Q(x0)∧Q(x1)∧C(x0, x1))

∨ TC3 x0, x1 (Q(x0)∧Q(x1)∧Da(x0, x1))
∨ TC3 x0, x1 (Q(x0)∧Q(x1)∧Db(x0, x1))

∨ TC3 x0, x1 (Q(x0)∧Q(x1)∧ R(x0, x1)))

as it finds the transitive closures of Boolean combinations of literals distinguishing
P from N for k = 2 variables.

4.5 Learning Legal Moves

Having learned the winning conditions, we still face the problem of determining
which moves are legal and which are not. Since from each video we derive a se-
quence of structures, and since the underlying grid does not change, we can simply
take the symmetric difference of the labels of two successive structures and get
a prototype of a move: the two sub-structures containing only the elements that
changed labels. For example, for Connect4 there would be only 2 prototypes of
moves: changing a blank field to a red one, and changing it to a yellow one.

We derive the prototypes of moves from all available sequences, and thus the de-
rived prototypes always cover all presented moves. In some cases, e.g. in Gomoku,
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Figure 4.4: An illegal pawn move.

the prototypes are already exactly the desired moves. But in most cases the pro-
totypes are too general, as not every imaginable move is legal. For example, in
Connect4 it is not possible to change a blank field to a yellow one or to a red one if
there is still a blank field below it. To demonstrate such situations, we also record
videos of illegal moves, such as the move of a pawn presented in Figure 4.4. Note
that a move always consists of two structures.

For every generated move prototype, we gather all pairs of structures in which
this move was applied legally, and also all pairs in which it was demonstrated as
illegal. From each of these pairs, we take the first structure (the one before the move
was applied) and add to it new predicates, marking the elements of the prototype,
i.e. the fields on which the predicates change. After such marking, we again have
a set of positive structures (the marked first ones from the legal moves) and a set
of negative ones. This allows us to again use the Distinguish procedure to derive
the precondition of a legal move. For example, consider Figure 4.5 in which we
present an example of an outcome of a legal and of an illegal move. The field on
which the upper red token is placed is the one that changes, so it gets marked by
e1. Let us denote the structures representing these two marked positions – the legal
one, depicted on the left in Figure 4.5, and the illegal one, depicted on the right – by
A+ and A−, respectively. Running Distinguish({A+},{A−}) results in the following
formula:

∃x1(Q(x1)∧∃x0(C(x1, x0)∧ x0 = e1)),

where e1 is a constant marking the single element of the move prototype. This
formula expresses that there must be a yellow element below the changed one.

4.6 Summary of Experimental Results

To learn a complete game, we use four kinds of videos. For the winning conditions,
we use videos that present plays ending in positions won by the first player and
some with plays ending in positions won by the second player. Additionally, it is
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Figure 4.5: A legal and an illegal move in Connect4.

1 Wins 2 Wins Not Won Illegal

Breakthrough 1 1 3 0
Connect4 4 4 13 4
Gomoku 4 4 9 0
Pawn Whopping 1 1 4 6
Tic-Tac-Toe 4 4 17 0

Table 4.1: Number of videos needed for each game.

convenient to allow videos that depict unfinished or tied plays, and, to distinguish
legal and illegal moves, we may need illegal move videos. There are therefore 4
possible kinds of videos. The number of videos of each kind that we used to learn
the correct rules of each of the example games is given in Table 4.1.
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5.1 Game Description Language

The game description language, GDL, is a variant of Datalog used to specify games
in a compact, prolog-like way. The GDL syntax and semantics are defined in [10, 20],
we refer the reader there for the definition and will only recapitulate some notions
here. When we build first-order formulas over GDL atoms during intermediate steps
of translation, they are intended to be interpreted in already existing GDL models
(which are defined in [10, 20]).

The state of the game in GDL is defined by the set of propositions true in that state.
These propositions are represented by terms of limited height. The moves of the
game, i.e. the transition function between the states, are described using Datalog
rules — clauses define which predicates hold in the subsequent state. In this way a
transition system is specified in a compact way. Additionally, there are 8 special rela-
tions in GDL: role, init, true, does, next, legal, goal and terminal, which
are used to describe the game: initial state, the players, their goals, and thus like.

We say that GDL state terms are the terms that are possible arguments of true,
next and init relations in a GDL specification, i.e. those terms which can define
the state of the game. The GDL move terms are ground instances of the second
arguments of legal and does relations, i.e. those terms which are used to specify
the moves of the players.

The complete Tic-tac-toe specification in GDL is given in Figure 5.1. While games
can be formalised in various ways in both systems, Figure 5.1 gives an example of a
formalisation in GDL.

5.1.1 Notions Related to Terms

Since GDL is a term-based formalism, we will use the standard term notions, as
e.g. in the preliminaries of [3]. We understand terms as finite trees with ordered
successors and labelled by the symbols used in the current game, with leafs possibly
labelled by variables.

Substitutions. A substitution is an assignment of terms to variables. Given a
substitution σ and a term t we write σ(t) to denote the result of applying σ to t, i.e.
of replacing all variables in t which also occur in σ by the corresponding terms. We
extend this notation to tuples in the natural way.
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(role x)
(role o)
(init (cell a a b))
(init (cell b a b))
(init (cell c a b))
(init (cell a b b))
(init (cell b b b))
(init (cell c b b))
(init (cell a c b))
(init (cell b c b))
(init (cell c c b))
(init (control x))
(<= (next (control ?r)) (does ?r noop))
(<= (next (cell ?x ?y ?r)) (does ?r (mark ?x ?y)))
(<= (next (cell ?x ?y ?c)) (true (cell ?x ?y ?c)) (does ?r (mark ?x1 ?y1))
(or (distinct ?x ?x1) (distinct ?y ?y1)))

(<= (legal ?r (mark ?x ?y)) (true (control ?r)) (true (cell ?x ?y b)))
(<= (legal ?r noop) (role ?r) (not (true (control ?r))))
(<= (goal ?r 100) (conn3 ?r))
(<= (goal ?r 50) (role ?r) (not exists_line3))
(<= (goal x 0) (conn3 o))
(<= (goal o 0) (conn3 x))
(<= terminal exists_line3)
(<= terminal (not exists_blank))
(<= exists_blank (true (cell ?x ?y b)))
(<= exists_line3 (role ?r) (conn3 ?r))
(<= (conn3 ?r) (or (col ?r) (row ?r) (diag1 ?r) (diag2 ?r)))
(<= (row ?r)
(true (cell ?a ?y ?r)) (nextcol ?a ?b)
(true (cell ?b ?y ?r)) (nextcol ?b ?c)
(true (cell ?c ?y ?r)))

(<= (col ?r)
(true (cell ?x ?a ?r)) (nextcol ?a ?b)
(true (cell ?x ?b ?r)) (nextcol ?b ?c)
(true (cell ?x ?c ?r)))

(<= (diag1 ?r)
(true (cell ?x1 ?y1 ?r))
(nextcol ?x1 ?x2) (nextcol ?y1 ?y2)
(true (cell ?x2 ?y2 ?r))
(nextcol ?x2 ?x3) (nextcol ?y2 ?y3)
(true (cell ?x3 ?y3 ?r)))

(<= (diag2 ?r)
(true (cell ?x1 ?y5 ?r))
(nextcol ?x1 ?x2) (nextcol ?y4 ?y5)
(true (cell ?x2 ?y4 ?r))
(nextcol ?x2 ?x3) (nextcol ?y3 ?y4)
(true (cell ?x3 ?y3 ?r)))

(nextcol a b)
(nextcol b c)

Figure 5.1: Tic-tac-toe in the Game Description Language.
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MGU. We say that a tuple of terms t is more general than another tuple s of equal
length, written s ≤ t, if there is a substitution σ such that s = σ(t). Given two tuples
of terms s and t we write s=̇t to denote that these tuples unify, i.e. that there exists
a substitution σ such that σ(s) = σ(t). In such case there exists a most general
substitution of this kind, and we denote it by MGU(s, t).
Paths. A path in a term is a sequence of pairs of function symbols and natural
numbers denoting which successor to take in turn, e.g. p = ( f , 1)(g, 2) denotes the
second child of a node labelled by g, which is the first child of a node labelled by f .
For a term t we write t ⇃p to denote the subterm of t at path p, and that t has a path
p, i.e. that the respective sequence of nodes exists in t with exactly the specified
labels. Using p = ( f , 1)(g, 2) as an example, f (g(a, b), c) ⇃p= b, but g( f (a, b), c) ⇃p is
false. Similarly, for a formula ϕ, we write ϕ(t ⇃p) to denote that t has path p and the
subterm r = t ⇃p satisfies ϕ(r). A path can be an empty sequence ε and t ⇃ε= t for all
terms t.

For any terms t, s and any path p existing in t, we write t[p ← s] to denote the
result of placing s at path p in t, i.e. the term t′ such that t′ ⇃p= s and on all other
paths q, i.e. ones which neither are prefixes of p nor contain p as a prefix, t′ is equal
to t, i.e. t′ ⇃q= t ⇃q. We extend this notation to sets of paths as well: t[P ← s] places s
at all paths from P in t.

5.2 Translation

In this section, we describe our main construction. Given a GDL specification of a
game G, which satisfies the restrictions described elsewhere, we construct a Toss
game T(G) which represents exactly the same game. Moreover, we define a bijec-
tion µ between the moves possible in G and in T(G) in each reachable state, so that
the following correctness theorem holds.

Theorem 11 (Correctness).
Let S be any state of G reached from the initial one by a sequence of moves m1 . . . mn.
We write µ(S) for the state of T(G) reached by µ(m1) . . . µ(mn). The following con-
ditions are satisfied.

– The function µ defines a bijection between the moves possible in S and in µ(S)
for each player.

– If no move is possible in S (and in µ(S)), then the payoffs in G evaluate to the
same value as those in T(G).

We will not prove this theorem here, but the construction presented below should
make it clear why the exact correspondence holds. For the rest of this section let
us fix the GDL game specification G we will translate. We begin by transforming G
itself: eliminating variables clearly referring to players (i.e. arguments of positive
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role atoms, first arguments to positive does atoms and to legal) by substituting
them by players of G (i.e. arguments of role facts), duplicating the clauses. From
this specification, we derive the elements (Section 5.2.1) and the stable relations
and initial fluents (Section 5.2.3) of the Toss structure. Having separated the fluent
from the stable part of state terms, we further transform the definition G by ex-
panding variables corresponding to fluents, and use the transformed specification
to derive the defined relations in Toss, the rewriting rules (Section 5.2.4) and finally
the move translation function (Section 5.2.5).

5.2.1 Elements of the Toss Structure

By definition of GDL, the state of the game is described by a set of propositions true
in that state. Let us denote by S the set of all GDL state terms which are true at
some game state reachable from the initial state of G.

For us, it is enough to approximate S from above. To approximate S, we currently
perform an aggregate playout, i.e. a symbolic play in where all players take all
their legal moves in a state. Since an approximation is sufficient, we check only the
positive part of the legality condition of each move.

Fluent Paths

We need to decide which parts of the state description will provide the fixed “coor-
dinate system”, and which will provide labels over coordinates (predicates ranging
over the points spanned by the coordinates). The labels-predicates will be the only
means accounting for game state changes, directly translating into Toss fluents, we
will therefore call the state term paths containing them the fluent paths. We need
to have at least one fluent for each next clause that leads to state change, but first
we need to determine which next clauses change state.

We say that a next clause C is a frame clause when, for each state transition, each
state term it generates is already present in the prior state. If possible we find a
frame clause by checking whether it contains a true relation applied to a term equal
to the next argument. Otherwise, we approximate by checking on states generated
by a few random playouts.

For each non-frame next clause (<= (next sC) . . .), a fluent path is a path p to
a leaf in sC such that the set S ⇃p= {t ∣ t = s ⇃p, s ∈ S} is the smallest, where S is the
set of all state terms. When there are several smallest paths, we select p such that
sC ⇃ p is not a variable. We denote the set of all fluent paths by P f .

Example 12. There are three next clauses in Figure 5.1. C1:

(<= (next (cell ?x ?y ?c))
(true (cell ?x ?y ?c))
(does ?r (mark ?x1 ?y1))
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(or (distinct ?x ?x1) (distinct ?y ?y1)))

does not lead to any fluent paths, since it is a frame clause. The clause:

(<= (next (cell ?x ?y ?r))
(does ?r (mark ?x ?y)))

expands to:

(<= (next (cell ?x ?y x))
(true (control x))
(true (cell ?x ?y b)))

(<= (next (cell ?x ?y o))
(true (control o))
(true (cell ?x ?y b)))

These generate the fluent path (cell, 3), since S ⇃(cell,1)= S ⇃(cell,2)= {a, b, c} and
S ⇃(cell,3)= {x, o, b} have the same cardinality, but only (cell, 3) does not point to a
variable. The clause:

(<= (next (control ?r)) (does ?r noop))

expands to:

(<= (next (control x))
(not (true (control x))))

(<= (next (control o))
(not (true (control o))))

These generate the fluent path (control, 1) since they are not frame clauses and
(control, 1) points to the only leaf in heads of these clauses. In the end P f =
{(cell, 3), (control, 1)}.

Counters and Counter Clauses

In many definitions there are state terms that would lead to fluent paths gener-
ating a large number of fluents (i.e. distinct subterms at the fluent path), each
fluent having a numeric interpretation, for example being the count of play steps.
We are eager to translate the part of the game dealing with such state terms com-
pactly, using the real number facilities of Toss, since otherwise each “numeric value”
would be considered structurally significant, leading to combinatorial explosion in
the translation process.

In the future, the specification and implementation of counters handling, can be
generalized for game definitions whose counters deviate from the (natural but very
limited) format currently handled. Ideally, even “structural” functional dependen-
cies should be recognized and handled compactly, but we leave it to future work.
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Definition 13. A numeric function relation is a binary relation given in the game
definition entirely by ground facts, containing as relation arguments only numerals:
constants that can be parsed as (real) numbers, and the first arguments of its facts
are distinct for distinct facts.

Example 14. In the game pacman3p.gdl, the numeric function relations are ++,
-, succ, scoremap. As it turns out, ++ and - are only used for structural purposes
(which are not precluded by determining that a relation is a numeric function rela-
tion).

Definition 15. A next clause (<= (next ( f h)) b), where f ∈ C is an unary func-
tor and b is the clause body, is a counter clause given counter candidates C, when
either h is a numeral (then it is a “counter reset clause”), or h is a variable, there
is a directed path leading to it from some positive true literal (true (g h0)) in
b with g ∈ C, using numeric function relation positive literals in b (for example an
empty path when (true (g h)) is in b), and the variables on the path (including
h) do not have other occurrences in b; in other words, when h is computed from a
counter candidate using numeric function relations and the computation does not
participate in the remaining “structural” condition of the clause body.

We find the set of counters by iterating an operator counters(C), that finds func-
tors f whose all (<= (next ( f h)) b) clauses are conter clauses given counter
candidates C. We start with all unary functors f that have exactly one init fact (<=
(init ( f h))), and h is a numeral.

We remove the next clauses that build counters before the aggregate playout that
generates all state terms is performed, and add them back after the fluent paths are
found. Therefore, no fluent path will point into a counter.

We prepare the translation of numeric function relations for later use: they are
translated as piecewise-linear functions.

Structure Elements

The fluent paths define the partition of GDL state terms into elements of the Toss
structures in the following way.

Definition 16. We define the element coordinate equivalence ∼ by:

t ∼ s ⇔ t[P f ← c] = s[P f ← c] for all terms c.

The set of elements A of the initial Toss structure A consists of equivalence classes
of ∼. For a ∈ A we write ⟦a⟧ to denote the corresponding subset of equivalent terms
from S.

We define coordinate paths Pc as such paths p that, for all a ∈ A, if, for any t ∈ ⟦a⟧,
t ⇃p, then for all s, t ∈ ⟦a⟧, s ⇃p= t ⇃p. For p ∈ Pc we can therefore define the coordinate
subterm a ⇃c

p as t ⇃p for t ∈ ⟦a⟧.
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Example 17. Continuing the example of the Tic-tac-toe specification from Fig-
ure 5.1, we construct the set A. The terms in S are either (cell s t p) or (control q),
where s and t range over a, b, c, p over x, o, b and q can be x or o. Since
P f = {(cell, 3), (control, 1)}, we consider as ∼-equivalent all cell terms which dif-
fer only on p and all control terms which differ on q. Thus, the set A consists of 10
elements: the element actrl for the single equivalence class of control terms, and 9
elements as,t for the equivalence classes of (cell s t p) with fixed s and t.

A = {actrl , aa,a, aa,b, aa,c,

ab,a, ab,b, ab,c,

ac,a, ac,b, ac,c}.

Note the similarity to the starting structure in Figure 1.2, up to the control element.
The set of coordinate paths for this specification is Pc = {(cell, 1), (cell, 2)}.

Optionally, we refine Pc afterwards to point to the leaves of the state terms that
contain a path, among all ground state terms.

5.2.2 Expanding the GDL Game Definition

Now we discuss transformations of the game G that result in a longer (having more
clauses) but simpler definition. Eliminating a GDL variable x ∈ FV(C) by a set of
terms T means replacing the clause C the variable occurs in, with a set of clauses
Ct = C[v ← t] for t ∈ T. First such transformation initiated the translation process:
we eliminated variables ranging over players (by virtue of occurring in does, legal
or goal atoms), by the players of the game.

Also at the beginning of the translation process, we removed counter building
clauses from the game definition; we add them back at this point.

We transform the definition G by inlining all relations other than next whose
defining clauses have occurrences of does atoms. It is required because later we
need to reliably partition next clauses according to their does atoms.

Before generating Toss formulas we transform the definition G by grounding all
variables that have occurrences at fluent paths, i.e. eliminating these variables by
constants that occur at these paths in ground state terms S.

We eliminate pattern matching when possible: arguments of a defined relation
that are not variables in the head of each clause defining the relation. We generate
a new relation name for each root functor of a value of the argument. We replace all
atoms of the old relation by those new relations to which the eliminated argument
of the atom can be instantiated, if necessary duplicating the clause containing the
atom (if some variables need to be eliminated by the instantiation). If the eliminated
argument is a variable but the eliminating functor has positive arity, we introduce
fresh variables to instantiate the variable with.

70



5 GDL to Toss Translation

As a special case of eliminating pattern matching, we eliminate arguments of a
defined relation that are ground in the head of each clause defining the relation.

As an optimization, instead of duplicating the clause, if a variable is local to an
atom (in all cases of eliminating a variable), we can replace the atom by a disjunction
of corresponding atoms, or if it is a negative literal, by a conjunction of negated
atoms.

For simplicity, we still refer to the transformed definition as G, but it is to be un-
derstood as the result of transformation G′ equivalent to the original game definition
G.

5.2.3 Relations

Preparing the Translation of Relations

Prior to translating formulas, we need to transform the game definition, iteratively
for each relation in the partial order of the “call graph”, i.e. whenever possible doing
the transformation for a relation after doing it for relations used to define it. (We
keep the convention from Section 5.2.2, that G is substituted with the transformed
clauses.) We process both future structure relations and future defined relations.
First we determine by which coordinate paths to pass arguments to the relation
(and whether to collapse original arguments). Then we add missing state terms to
the relation call sites, as each translated relation’s argument needs a corresponding
state term.

State Terms to Transfer Arguments We prepare relation R with GDL defining
clauses

(<= (R t11 . . . t1n) b1), . . . , (<= (R tk1 . . . tkn) bk)

Let all atoms of R in G (including both the heads (R tj
1 . . . tj

n), and inside of
bj above) be R = {(R r1

1 . . . r1
n), . . . , (R rK

1 . . . rK
n )}. Based on R we will find a par-

tition of argument positions and an assignment of coordinate paths to positions
ArgPaths(R) = ((o1, p1), . . . , (on, pn)) such that {o1, . . . , on} = {1, 2, . . . , N}, for any par-
tition class II = {i ∣ oi = I}, the paths (pi ∣ i ∈ I) are distinct and do not conflict, i.e.
(∃s)(∀pi ∣ i ∈ I) s ⇃pi . (Equivalently, ArgPaths(R) = {{(i, pi) ∣ i ∈ I1}, . . . ,{(i, pi) ∣ i ∈
IN}}.)

GDL arguments of a single partition class will be passed as a single relation argu-
ment.

To find the paths and the partition, consider a clause body b, any occurrence of
relation R atom (R rj

1 . . . rj
n) in b and positive literal (true s) ∈ b (where the literal is

not under disjunction). Let {p, i ∣ s ⇃p= rj
i}. We count such sets of paths for all b and

positive (true s) ∈ b. We greedily select sets that together cover all argument posi-
tions, with highest size, and of equally sized with highest count. Of these, we build
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the partition by removing from the sets the path-position pairs where the position
is already present in remaining path-position pairs, in order reverse to the selection
criterion.

In case no set of paths contains a path for the ith argument, we set the path
pi ∈ Pc (with a unique oi) so that the intersection of the projection of the graph of R
for the initial game state gR,i = {s∣G ⊢ R(t1, . . . , tn) for any t s.t. ti = s}, and the set of
subterms of state terms at path pi, gpi = {s ⇃pi ∣s ∈ S}, is maximal w.r.t. cardinality
(pi = arg maxp∈Pc ∣gR,i ∩ gp∣).

Ideally, pi ∈ Pc should be a path whose domain, i.e. the set {t∣s ⇃pi= t, s ∈ S},
contains the domain of the ith argument of R, i.e. the sum of projections of R on ith
argument for all possible game states. We do not guarantee this.

We single out relations that are static, with only singleton partition classes of
arguments, and where there were multiple candidate paths for some argument. We
call them coordinating relations, and for each coordinating relation R we remember
all the combinations of candidate argument paths

Coordin(R) = {(p1, . . . , pn) ∣ pi is an ith argument path candidate}

Once the paths for arguments have been selected, we make sure that a clause in G
that has an atom (R r1

1 . . . r1
n), has the positive literals (true sI) such that ⋀i∈I sI ⇃pi=

rj
i . For every I for which such a positive literal does not occur in the clause body, we

add an atom (true BL({pi ← rj
i ∣ i ∈ I})) to the clause. The notation BL({pi ← ti ∣ i ∈ I})

for paths pi and terms ti denotes a state term containing ti at path pi, and BLANK as
subterms at all its positions that are not on any path pi (i.e. are not prefixes of
any pi). In case of a coordinating relation R, if for none of paths pi ∶ (. . . , pi, . . .) ∈
Coordin(R), such an s ⇃pi= rj

i exists, we add (true BL(pi ← rj
i)) for some such path pi.

Relations in the Structure

Having defined the elements A as equivalence classes of state terms, let us now
define the relations in the initial structure A.

Subterm equality relations. For all pairs of paths p, q ∈ Pc we introduce the
subterm equality relation Eqp,q:

Eqp,q(a1, a2) ⇐⇒ a1 ⇃c
p = a2 ⇃c

q .

Coordinating relations. For all coordinating relations R, and all tuples of paths
(p1, . . . , pn) ∈ Coordin(R), we introduce the coordinating relation Rp1,...,pn :

Rp1,...,pn(a1, . . . , an) ⇐⇒ R(a1 ⇃c
p1

, . . . , an ⇃c
pn) in any state.
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Fact relations. For all remaining relations R of G that do not (directly or indirectly)
depend on the state, let ArgPaths(R) = ((o1, p1), . . . , (on, pn)). Let o−1(j) = i iff oi = j.
We introduce the fact relation R:

R(a1, . . . , aN) ⇐⇒ R(ao−1(1) ⇃c
p1

, . . . , ao−1(n) ⇃c
pn) in any state.

Coordinate predicates. For all paths p ∈ Pc and subterms s = t ⇃p, t ∈ S, we intro-
duce the coordinate predicate Coords

p(a):

Coords
p(a) ⇐⇒ a ⇃c

p = s.

Fluent predicates. Let S init = {s ∣ init(s) ∈ G} be the set of state terms under init.
For all paths p ∈ P f and subterms s = t ⇃p, t ∈ S, we introduce the fluent predicate
Flus

p(a):

Flus
p(a) ⇐⇒ t ⇃p = s for some t ∈ ⟦a⟧∩S init.

Currently in the implementation, the string representing the path p alone is used as
the predicate name, we use the prefixes Coord and Flu in the reference for clarity.
Root predicates. We define the coordinate root relation ∼m by:

t ∼m s ⇔ t[P f ∪Pc ← c] = s[P f ∪Pc ← c] for all terms c.

We call an equivalence class of ∼m a coordinate root. For all coordinate roots m we
introduce the coordinate predicate Rootm. Root predicates are similar to the coordi-
nate predicates, but instead of matching against a subterm, they match against the
coordinate root.

Rootm(a) ⇐⇒ ⟦a⟧ ⊂ m.

Example 18. To list the relations derived for the Tic-tac-toe specification, recall
that Pc = {(cell, 1), (cell, 2)} consists of two paths. To shorten notation, we will
just use the index i for (cell, i).

Subterm equality relations. The relation Eqi,j contains all pairs of elements for
which the ith coordinate of the first one equals the jth coordinate of the second one.
For example

Eq1,1 = {(aa,a, aa,a), (aa,a, aa,b), (aa,a, aa,c),

. . .

(ac,c, ac,a), (ac,c, ac,b), (ac,c, ac,c)}

describes the identity of the first coordinate of two cells.
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Coordinating relations. The only relation in the example specification is nextcol
and we thus get the relations nextcoli,j. For example, the relation

nextcol2,2 = {(aa,a, aa,b), (aa,a, ab,b), (aa,a, ac,b),

. . . ,

(ac,b, aa,c), (ac,b, ab,c), (ac,b, ac,c)}

contains pairs in which the second element is in the successive row of the first one.
Note that, for example, the formula Eq1,1(x1, x2)∧ nextcol2,2(x1, x2) specifies that x2

is directly right of x1 in the same row.
Coordinate predicates. Since the terms inside cell at positions 1 and 2 range

over a, b, c, we get 6 coordinate predicates Coordai , Coordbi , Coordci for i = 1, 2. They
mark the corresponding terms, e.g.

Coorda2 = {aa,a, ab,a, ac,a}

describes the bottom row.
Fluent predicates. The fluent paths P f = {(cell, 3), (control, 1)} and the terms

appearing there are b, x, o for (cell, 3) and x, o for (control, 1), resulting in 5
fluent predicates. For example, Fluo

(cell,3)(a) will hold exactly for the elements a
which are marked by the player o. In the initial structure, the only nonempty fluent
predicates are

Flub
(cell,3) = A ∖ {actrl} and Flux

(control,1) = {actrl}.

Root predicates. For the specification we consider, there are two coordinate roots:
m1 = {(control x) ∣ (control x) ∈ S} and m2 = {(cell x y z) ∣ (cell x y z) ∈ S}.
The predicate Rootm1 = {actrl} holds exactly for the control element, and Rootm2 =
A ∖ {actrl} contains these elements of A which are not the control element, i.e. the
board elements.

In Toss, stable relations are relations that do not change in the course of the game,
and fluents are relations that do change. Roughly speaking, a fluent occurs in the
symmetric difference of the sides of a structure rewrite rule. In the translation,
the fluent predicates Flus

p are the only introduced fluents, i.e. these predicates will
change when players play the game and all other predicates will remain intact.

Counters in the Initial Structure If there are any counters in the definition, we
add an element COUNTER. We add a singleton predicate COUNTER ranging only over
the element COUNTER. For each counter, we introduce a corresponding function over
COUNTER, with the initial value determined by an init fact from the game definition.
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5.2.4 Structure Rewriting Rules

To create the structure rewriting rule for the Toss game, we first construct two types
of clauses and then transform them into structure rewriting rules. Let (p1, . . . , pn)
be the players in G, i.e. let there be (role p1) up to (role pn) facts in G, in this
order.

Move Clauses

By GDL specification, a legal joint move of the players is a tuple of player term –
move term pairs which satisfy the legal relation. For a joint move (m1, . . . , mn) to
be allowed, it is necessary that there is a tuple of legal clauses (C1, ...,Cn), with head
of Ci being (legal pi li), and the legal arguments tuple being more general than
the joint move tuple, i.e. mi ≤ li for each i = 1, . . . , n.

The move transition is computed from the next clauses whose all does relations
are matched by respective joint move tuple elements as follows.

Definition 19. Let N be a next clause. The N does facts, d1(N ), . . . , dn(N ), are
terms, one for each player, constructed from N in the following way. Let (does pi

dj
i) be all does facts in N .

– If there is exactly one di for player pi we set di(N ) = di.

– If there is no does fact for player pi in N we set di(N ) to a fresh variable.

– If there are multiple d1
i , . . . , dk

i for player pi we compute σ = MGU(d1
i , . . . , dk

i )
and set di(N ) = σ(d1

i ).

We have mi ≤ di(N ) for each next clause N contributing to the move transition,
since otherwise the body of N would not match the state enhanced with (does pi
mi) facts.

Example 20. In the Tic-tac-toe example, there are three clauses where the control
player is o, which after renaming of variables look as follows.

N1 = (<= (next (control x)) (does x noop)),

N2 = (<= (next (cell ?x2 ?y2 o))
(does o (mark ?x2 ?y2))),

N3 = (<= (next (cell ?x3 ?y3 ?c))
(true (cell ?x3 ?y3 ?c))
(does o (mark ?x1 ?y1))
(or (distinct ?x3 ?x1) (distinct ?y3 ?y1))).
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The does facts are, respectively,

d1(N1) = noop and d2(N1) = x f1 ,

d1(N2) = x f2 and d2(N2) = (mark x2 y2),

d1(N3) = x f3 and d2(N3) = (mark x1 y1).

Each rewrite rule of the translated game is generated from a tuple of legal
clauses C1, . . . ,Cn and a selection of next clauses N1, . . . ,Nm, with variables renamed
so that no variable occurs in multiple clauses, and such that

li =̇ di(N1) =̇ . . . =̇ di(Nm)

for each player pi. We will consider all tuples C,N for which the the above MGU
exists and we will denote it by σC,N . We apply σC,N to the clauses and we will refer
to the result simply as the legal and next clauses of the rule.

Technically, for completeness, we need to generate a rule for a set of next clauses
even if we generate a rule for its superset, and then for correctness, we need to
preclude application of the first (more general) rule when the more concrete rule
is applicable, adding distinct conditions to clauses of the otherwise more general
rule. In the current implementation, we select a minimal covering family of maximal
sets of next clauses, where covering means that every clause occurs in at least one
set of the family. (While in Section 5.2.4 we describe additional partition of the
substituted clauses, in unlikely scenarios the generated σC,N might be too specific
to capture all possible moves.)

Example 21. Let C1 = noop and C2 = (mark x y). The clauses N1,N2,N3 introduced
above form a maximal set,

σC,N = {x f1 ↦ (mark x y), x f2 ↦ noop,

x2 ↦ x, y2 ↦ y, x1 ↦ x, y1 ↦ y}.

With all tuples C,N selected and the MGU σC,N computed, we are almost ready to

construct the rewriting rules. Still, for a fixed tuple C,N , we first need to compute
“erasure clauses” to make sure that a rewrite rule captures the whole substructure
that should be affected.

Concurrent Moves Games Introduced in Section 5.2.7, concurrent moves games
use a factored approach: since the di never share variables, legal and next clauses
are assigned to players and the whole construction of structure rewriting rules is
done separately for each player. Clauses without a does atom are assigned to the
“environment”. (In the interpretation, to reuse code, we simply build single-term
legal tuples for concurrent moves games.)
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Erasure Clauses

So far, we have not accounted for the fact that rewrite rules of Toss only affect the
matched part of the structure, while the GDL game definition explicitly describes
the construction of the whole successive structure. Negating the frame clauses
from the tuple N and transforming them into erasure clauses will keep track of the
elements that possibly lose fluents and ensure correct translation.

We determine which clauses are frame clauses prior to partitioning into the rule
clauses and computing the substitution σC,N – at the point where fluent paths are
computed. We transform frame clauses by expanding relations that would other-
wise be translated as defined relations: so as to eliminate local variables whenever
possible.

From the frame clauses in σC,N (N1), . . . , σC,N (Nm), we select subsets J such that,
clauses in J having the form (<= (next si) bi), it holds

s1 =̇ f . . . =̇ f s∣J∣,

i.e. the arguments of next unify. Note that we use =̇ f instead of the standard
unification, and by that we mean that the variables shared with the legal clauses
C are treated as constants. The reason is that these variables are not local to the
clauses and must therefore remain intact. As before, we select a minimal covering
family of maximal such subsets (possibly resulting, in unlikely cases, in rules that
do not remove fluent predicates over elements that do not gain fluent predicates
during rewriting.)

Intuitively, the selected sets J describe a partition of the state terms that could
possibly be copied without change by the rule we will generate for C,N .

Let us write ρ for the f -MGU of s1, . . . , s∣J∣. To compute the bodies of the erasure
clauses, we negate the disjunction of substituted bodies of the frame clauses and
bring this Boolean combination to disjunctive normal form (DNF), i.e. we compute
conjunctions e1, . . . , el such that

¬(ρ(b1)∨ ⋅ ⋅ ⋅ ∨ ρ(b∣J∣)) ≡ (e1 ∨ e2 . . . ∨ el).

As the head of each erasure clause we use ρ(s1) = ⋅ ⋅ ⋅ = ρ(s∣J∣).
Erasure clauses that contain variables other than the “fixed variables” of the

legal clauses are problematic. If such “unfixed” variables appear in the head, the
erasure clause should apply to all instantiating variables in a single application of
the rewrite rule, which is too difficult to achieve using Toss semantics. Rather, we
match ρ(s1) against positive atoms in the bodies of the move clauses and add an in-
stantiated clause for each match. If such “unfixed” variables occur only in the body,
they should be quantified universally. We just ignore erasure clauses containing
unfixed variables that occur only in the body.

The resulting erasure clauses are
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EC,N (J) = {(<= σ(ρ(s1)) σ(ei)) ∣ σ unifies ρ(s1) with a pos. atom of N
∨ (σ = id ∧ FVar((<= h ei))∖ FVar(C) = ∅),

i = 1, . . . , l}

and we write EC,N for the union of all EC,N (J), i.e. for the set of all C,N erasure
clauses.

Example 22. In our example, N3 and its counterpart for the other player are the
only frame clauses in G. After negation, σ(N3) splits into several clauses ei. The rel-
evant one is (<= (next (cell ?x3 ?y3 ?c)) (?x3 = ?x) (?y3 = ?y)), i.e. (<=
(next (cell ?x ?y ?c))). The resulting erasure clause is (<= (next (cell ?x
?y BLANK))). If no other clause had the form (<= (next (cell ?x ?y ...)) ...),
this clause would cause the erasure of any fluent at coordinates (x, y). Other erasure
clauses derived from σ(N3) turn out to be contradictory with remaining clauses,
and thus will not contribute to any rewrite rule in the translation, due to filtering
described below.

Unframed Fluents Some possible subterms of state terms are not covered by any
frame clauses. We cannot rely then on erasure clauses to guarantee that matching
those fluents will be part of the L-structure of the rewrite rule, rather than the pre-
condition. For all such unframed fluents that occur in the R-structure of the rewrite
rule, we move their atoms from the precondition to the L-structure. But note that
different variables existentially quantified in a precondition need not have distinct
assignments, thus we cannot require that elements added to “erase” unframed flu-
ents have distinct assignments when matching a rule. To bypass this problem, we
extend the semantics of rewrite rules, providing a new special relation nondistinct,
that selectively weakens the embedding condition of rule matching, into a homo-
morphism condition where only the elements not related by nondistinct need to
be distinct.

Example 23. In the Pacman game pacman3p.gdl, the pacman and the ghosts are
singleton predicates, and therefore do not have corresponding frame (and erasure)
clauses. We therefore move the check for their old location from the precondition of
a rule to the L-structure of a rule, to erase them from the old location before adding
to the new location. But we cannot rely that the old location and the new location
are distinct. For example, the definition of (move nowhere) action is provided just
as a move in any (other) direction, also describing the old location and the new
location. We join the old and the new location by nondistinct in the L-structure.
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Rewriting Rule Creation

For each suitable tuple C,N we have now created the unifier σC,N and computed
the erasure clauses EC,N . To create the rules, we need to further partition the rule
clauses σC,N (Ci), σC,N (Ni) and EC,N , and augment them with further conditions. The
reason is that the prepared rule clauses may have different matches in different
game states, while the Toss rule has to be built from all the rule clauses that would
match when the Toss rule matches. Therefore, we need to build a Toss rule for
each subset of rule clauses that are “selected” by some game state (i.e. are exactly
the rule clauses matching in that state), but add to it “separation conditions” that
prevent the Toss rule from matching in game states where more rule clauses can
match.

We select groups of atoms (collected from rule clauses) that separate rule clauses,
and generate a Toss rule candidate for every partition of the groups into true and
false ones: we collect the rule clauses that agree with the given partition. The
selected atoms, some negated according to the partition, form the separation con-
dition. Currently, we do not consider atoms under disjunction (mostly for simplic-
ity considerations; would this cause problems, the definition can be extended to
include disjunctions in making the partition). We remove from the separation con-
dition negations of atoms that contain “local variables”: variables not appearing in
positive atoms of the whole condition.

We filter the rule candidates by checking for satisfiability (in the same GDL model
as used for building the initial Toss structure) of the static part of their clause bodies,
and later by checking for satisfiability of the whole clause bodies in at least one of a
collection of random playout states. For each remaining candidate, we will construct
the Toss rule in two steps.

In the first step we generate the matching condition: we translate the conjunction
of the bodies of rule clauses and the separation condition. This translation follows
the definitions of atomic relations presented in Section 5.2.3 and is described in
Section 5.2.6.

In the second step, we build a Toss rewrite rule itself. From the heads of the move
clauses of a rule candidate, we build the ADD part of the rule effect; from heads of
the erasure clauses we build the DELETE part. We add “blanked-out” heads of the
clauses (atoms (true BL(s)) for clause heads (next s)) to the matching condition,
not to lose any facts constraining the rule structure elements (but only after the
rule candidates are checked for satisfiability). The precondition of the Toss rule is
built from the matching condition. Quantification in the precondition over variables
occurring in the ADD and DELETE parts is dropped.

Translating Counter Clauses We treat the counter clauses specially, to simplify
presentation we describe the differences here. We do not add the “blanked-out”
counter state term to the R-structure, instead we add a new element (with the
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COUNTER predicate over it in the L-structure). We remove the computation of the
counter update from the counter clause, reset the resulting clause to “unrequired”,
and add it back to the candidate clauses, remembering the association with the
counter update. After the rule clauses have been finally partitioned, we make sure
that there is only one counter clause for a given counter in each resulting rule can-
didate. To complete the translation, we calculate the function update, inlining the
translations of numeric function relations, and add the update to the rule translation
for each counter occurring in a rule.

Having constructed and filtered the rewriting rule candidates, we have almost
completed the definition of T(G). Payoff formulas are derived by instantiating vari-
ables standing for the goal values. The formulas defining the terminal condition
and specific goal value conditions are translated as described in Section 5.2.6, from
disjunctions of bodies of their respective clauses.

5.2.5 Translating Moves between Toss and GDL

To play as a GDL client, we need to translate legal moves from G into Toss rule
embeddings for T(G), and conversely, the rule embeddings from T(G) into moves
of G.

In the incoming move case, we augment the Toss rewrite rules with constraints
provided in the incoming move, try to embed each of the augmented rules, and
return the single rule that matches and its unique embedding. Augmenting the rule
is done in the following simple way: If the head of a legal clause of the rule contains
a variable v at path q, a Toss variable x was derived from a game state term t such
that t ⇃p= v, and the incoming move has term s at path q, then we add Coords

p(x) to
the precondition.

It is actually possible, that there is more than a single rule and/or multiple embed-
dings; the semantics of the original GDL game specification demands that all rules
should be applied over all their non-overlapping embeddings. For the most part we
do not worry about such exceptional situations, but we handle one natural case in
Paragraph 5.2.7.

To translate the outgoing move, we recall the heads of the legal clauses of the
rule that is selected, as we only need to substitute all their variables. To eliminate
a variable v contained in the head of a legal clause of the rule, we look at the rule
embedding; if x ↦ a, x was derived from a game state term t such that t ⇃p= v,
and a ⇃c

p= s, then we substitute v by s. The move translation function µ is thus
constructed.

5.2.6 Translating Formulas and Building Defined Relations

We translate a GDL relation as either multiple Toss stable relations (i.e. structure
relations that do not change during the game), or as Toss defined relation (i.e. a re-
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lation given by its defining formula). All GDL relations that even indirectly depend
on true need to be translated as defined relations. Of the remaining relations, we
select the ones to be translated as structure (stable) relations heuristically. Cur-
rently, a parameter of the translation allows to: select relations with arity smaller
than three; or, select relations whose (some, or all) defining clauses are ground (i.e.
with empty bodies).

Translating Formulas

We normalize the GDL formula to be translated Φ, which is composed of conjunc-
tions, disjunctions and literals, into a disjunction TrDistr(Φ) ∶= Φ1 ∨ . . . ∨Φn, so that
every Φi = Gi ∧ ST+

i ∧ ST−
i , where all literals in ST+

i are positive true atoms and all
literals in ST−

i are negated true atoms, excluding application over counter terms
(we avoid unnecessary expansions), note that true atoms over counter terms are
left in Gi. Let ST(ϕ) be all the state terms, i.e. arguments of true atoms, in ϕ, that
are not counter terms, and let CT(ϕ) be the counter term atoms respectively.

For the purpose of translation involving counters, let CV
i be an assignment of

counters (identified by their names) to GDL variables x ← c such that a positive
atom (true (c x)) occurs in Φi. Also, let CQ(Ψ) be ∃vC(COUNTER(vC) ∧Ψ) when
vC ∈ FreeVar(Ψ), and CQ(Ψ) = Ψ otherwise, where vC is a distinguished variable for
handling counters translation.

TrRels(ϕ, S1, S2) descends ϕ translating each literal not involving counters as a
conjunction of literals, for every combination of coordinate paths into S1 state terms,
such that at least one of those terms is from S2.

When TrRels encounters a true atom over counter c, it builds an equation between
c(vC) and the argument of c in the atom when it is a constant, or in case c is applied
to a variable x, the value c′(vC) for c′ = CV

i (x). If TrRels encounters a numeric
function applied to either constants or variables in the domain of CV

i , it applies the
function to the right argument when building a similar equation. The translation
will currently fail if relations other than numeric functions are applied to variables
that also occur in counter terms: general case left as future work.

TrST(ϕ) translates true atoms which are not counters as a conjunction of their
coordinate and fluent predicates.

Let eqsi be ⋀{EQ(x, x)∣x ∈ FreeVar(Φi) ∖ FreeVar(CT(Φi))}. The relation name EQ

serves technical purposes: we treat is as a coordinating relation, relations EQp,q are
identified with subterm equality relations Eqp,q.

The result of translation is the disjunction of translations of each Φi. Let BL(t) =
t[P f ← BLANK]. A single Φi = Gi ∧ ST+

i ∧ ST−
i is translated as:
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Tr(Φi) ∶= ∃V+(TrRels(eqsi ∧Gi,ST(ST+
i ), V+)∧TrST(ST+

i )∧
¬∃V−(TrRels(eqsi ∧Gi,ST(ST+

i )∪ ST(ST−
i ), V−)∧

TrST(NNF(¬ST−
i ))))

V+ ∶= (BL(ST(ST+
i ))

V− ∶= (BL(ST(ST−
i ))∖V+)

The result of translation is Tr(Φ) ∶= CQ(Tr(Φ1) ∨ . . . ∨ Tr(Φn)). Note how vari-
ables with both positive and negative instantiating state terms are excluded from
universal treatment; in particular, the variables corresponding to Toss rewrite rule
structure elements will not be quantified universally, thanks to adding their “blank
representants” to the rule condition.

We now proceed to define TrRels and TrST. For an atom r, let ±r mean either r or
¬r when on the left-hand-side, and same-signed literal r or ¬r on the right-hand-side
as the one on the left-hand-side of an equality.

TrRels(ϕ1 ∧ ϕ2, S1, S2) =TrRels(ϕ1, S1, S2)∧TrRels(ϕ2, S1, S2)
TrRels(ϕ1 ∨ ϕ2, S1, S2) =TrRels(ϕ1, S1, S2)∨TrRels(ϕ2, S1, S2)

TrRels(±R(t1, . . . , tn), S1, S2) =⋀{± Rp1,...,pn(v1, . . . , vn) ∣ s1, . . . , sn ∈ S1∧
{BL(s1), . . . ,BL(sn)}∩ S2 ≠ ∅∧
v1 = BL(s1)∧ . . . ∧ vn = BL(sn)∧
p1, . . . , pn ∈ Pc ∧ s1 ⇃p1= t1 ∧ . . . ∧ sn ⇃pn= tn}
(when R is a coordinating relation)

TrRels(±true(c(t))) =± (c(vC)− TrC(t) = 0)
TrRels(±R(t1, t2)) =± ((NumF(R))(TrC(t1))− TrC(t2) = 0)

(when R can be translated as a numeric function NumF(R)
and both t1 and t2 are in the domain of TrC)

TrC(n) =n (when n is a constant)

TrC(x) =(CV
i (x))(vC) (when x is a variable in the domain of CV

i )

TrST(ϕ1 ∧ ϕ2) =TrST(ϕ1)∧TrST(ϕ2)
TrST(ϕ1 ∨ ϕ2) =TrST(ϕ1)∨TrST(ϕ2)

TrST(true(t)) =⋀{Coords
p(v) ∣ v = BL(t)∧ p ∈ Pc ∧ t ⇃p= s ∧ s ≠ BLANK}∧

⋀{Flus
p(v) ∣ v = BL(t)∧ p ∈ P f ∧ t ⇃p= s ∧ s ≠ BLANK}∧

⋀{Rootm(v) ∣ v = BL(t)∧ t ∈ m}

It remains to define TrRels for the case of fact relations. Let N, p1, . . . , pn, I1, . . . ,IN
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be as introduced for R. Since (R r1 . . . rn) ∈ R, there exist s1, . . . , sN ∈ S1 such that
(∀pi ∣ i ∈ Im) sm ⇃pi . Put

TrRels(±R(r1, . . . , rn), S1, S2) = ±R(BL(s1), . . . ,BL(sN)).

Translating Relation Definitions

Recall the notation introduced to generate state terms to transfer arguments for
translating a relation R as a fact relation. Let Coordin = ((a1, p1), . . . , (an, pn)) be
the partition of R arguments and their paths, maxi ai = N, and Im = {i ∣ ai = m} (for
m ∈ {1, . . . , N}). Let v1, . . . , vN be fresh Toss variables.

Recall that each (R tl
1 . . . tl

n) is also a (R rjl
1 . . . rjl

n) ∈ R for some jl. Therefore,
there exist positive true literals (true sl

1), . . . , (true sl
N) in the body bl such that

(∀pi ∣ i ∈ Im) sl
m ⇃pi . Let V l = {BL(sl

1), . . . ,BL(sl
N)}. The translated definition of R is:

R(v1, . . . , vN) =TrDefR((<= (R t1
1 . . . t1

n) b1))
∨ . . .∨
TrDefR((<= (R tk

1 . . . tk
n) bk))

TrDefR((<= (R tl
1 . . . tl

n) b)) =(∃V l)(v1 = BL(sl
1)∧ . . . ∧ vN = BL(sl

N)∧ EraseV l(Tr(bl)))

where EraseV(ϕ) erases all quantification over variables from V in formula ϕ.

5.2.7 Concurrent Moves and Toss Locations

In Section 5.2.4, we described the creation of state-transition rewrite rules, i.e.
where a single Toss rule is responsible for the transition to the next game state. But
we also remarked that the rule clauses can be divided by players to whose actions
they refer (by the does relation). In this case the game state transition is jointly
described by several Toss rules that apply independently, each rule “enacted” by
a player; such is the default way of defining simultaneous moves in Toss. We now
elaborate on three modes of building the game graph in the translated game.

Turn-based Games

are games where in any game state there is at most a single player having genuine
choice. Rather than attempting a complex analysis to detect as many turn-based
games as possible, we recognize some cases where in all states, all players but
one have a single legal move that is a constant (term of size one). Such move is
conventionally called noop. In the current implementation we simply check what
moves are available to players in the states of a couple of random playouts, so the
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detection is unsound. We only handle the case where the alternation of control forms
a cycle (players do not need to strictly alternate, for example a single-player game is
also a turn-based game, as another example in a three-player game the first player
may intersperse the moves of second and third player). We build a corresponding
cyclic graph of Toss locations. We limit the turn-based translation to the case where
all rule clauses have exactly one does atom (i.e. can be attributed to exactly one of
the players).

Concurrent Moves Games

When translation as a turn-based game fails, but all rule clauses have at most one
atom of does relation, we divide the clauses among players as mentioned earlier. We
translate using a single-location game graph. The next clauses wihout does atoms,
are assigned to a special player, “environment”.

To synchronize the play, we introduce an additional element, or use an existing
element singled-out by a stable singleton predicate, and we introduce player marker
predicates Playerpi for each player pi. We require that the player marker be absent
in the corresponding player’s rule left-hand-sides, and we add it over the singled-
out element by each rule. Finally, we build a rule for the “environment” player that
expects player markers for all players, and clears them all at once.

The next clauses assigned to the “environment” player together with the player
marker clearing can form a single rewrite rule, or these can be separate rewrite
rules.

General Interaction Games

When some rule clause has multiple does relations, we cannot use straightforward
translation of the previous section. Instead, we use the “environment” player to
carry out state changes, and have the players declare their moves by their rewrite
rules.

This mode of translation differs from the “standard modes” in the way the does
atoms are expanded by the legal clauses. For each legal clause we introduce a
fresh GDL relation over the variables of the head of the legal clause. Instead of
fully substituting does atoms by legal clause bodies in a next clause body, we now
substitute by applications of the freshly introduced relations. Later, we translate
the introduced relations coupled with legal clause bodies as defined relations. But
we will not add the “legal defined relations” to the Toss game definition, instead we
will use their defining formulas to derive rewrite rules for players. The introduced
“legal defined relation names” will be the fluents added by the player rules, we
will call them move markers. Unlike the game state fluents Flus

p, the move markers
will usually have arity higher than one. Due to the injective nature of rewrite rules
(the matchings are graph embeddings), we generate additional rewrite rules where
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some arguments of move markers are made equal and the right-hand-sides of the
rules are correspondingly smaller.

Besides move markers, player rules also introduce player markers, as in the pre-
vious section. The move and player markers are erased by the game state transition
rule of the “environment” player.

5.2.8 Translation-specific Simplification

In Section 5.3, we describe general game simplification in Toss. Here, we describe
parts of the translation process that were added to make the translation result more
compact and efficient.

Introducing disequalities. When a defined relation is built from clauses that con-
tain a single distinct positive literal each, when the defined relation is translated
as a binary relation, a disjunction of those distinct literals would be semantically
equivalent to a disequality of the relation arguments, and the remaining literals are
the same for all bodies (modulo renaming of variables), the disequality is introduced
to the translation and the distinct literals are removed.

Removing parts of next clauses that are redundant wrt. legal clauses. We
remove literals in bodies of next clauses that are considered subsumed by literals
from legal clause bodies. For a given next clause, we find the most coarse parti-
tion of its body such that different classes of this partition do not share variables.
A group of the body literals is considered subsumed if its every literal unifies with
some literal of some legal clause, under a common substitution. The current algo-
rithm is greedy in that we only consider the first matching legal body literal for a
given next body literal. We also ignore disjunctions.

Optionally, rather than considering literals sharing variables in bulk, we allow
for single literals be removed as subsumed by a legal clause literal. The unifying
substitution (i.e. the substitution that unifies the next clause literal and a legal
clause literal) is applied to the next clause. Note that the literals may be intended
for different elements as witnessed by remaining "next" clause literals, therefore
this more aggresive pruning does not preserve correctness.

5.3 Game Simplification in Toss

Games automatically translated from GDL, as described above, are verbose com-
pared to games defined manually for Toss. They are also inefficient, since the cur-
rent solver in Toss works fast only for sparse relations.

Both problems are remedied by joining co-occurring relations. Relations which
always occur together in a conjunction are replaced by their join when they are
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over the same tuple. Analogically, we eliminate pairs of atoms when the arguments
of one relation are reversed arguments of the other.

In an additional simplification, we remove an atom of a stable relation which
is included in, or which includes, another relation, when an atom of the other
relation already states a stronger fact. For example, if Positive ⊆ Number, then
Positive(x) ∧ Number(x) simplifies to Positive(x), and Positive(x) ∨ Number(x) sim-
plifies to Number(x).

The above simplifications can be applied to any Toss definition. We perform
one more simplification targeted specifically at translated games: We eliminate
Eqp,q(x, y) atoms when we detect that Eqp,q-equivalence of x and y can be deduced
from the remaining parts of the formula.

The described simplifications are stated in terms of manipulating formulas; be-
sides formulas, we also apply analogous simplifications to the structures of the Toss
game: the initial game state structure, and the L and R structures of the rules.
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Toss consists of the main TossServer which is built from several main modules (com-
ponents) explained in the sections below and corresponding to directories in the
code tree. The main modules contain OCaml modules themselves. Figure 6.1 shows
conceptual dependencies between components. The transitive closure of this depen-
dency structure limits the dependencies between the underlying OCaml modules.

Toss includes a JavaScript client which provide the user interface.

Formula

This most basic directory implements formulas as described above and various oper-
ations on formulas which are necessary for other modules. It also contains a parser
for formulas and the lexing file used for all parsers. The MiniSAT solver is included
in this directory as it is used for formula simplification.

Solver

This directory contains the module which represents relational structures, and the
full Solver, including the elimination-based solver for the theory of reals and the
SAT-based solving algorithm for monadic second-order logic.

Arena

This directory contains modules which implement the game definition, including
discrete and continuous structure rewriting, game file parser and client-server com-
munication parser and request type.

Play

This directory contains modules responsible for automatic play, including the heuris-
tic generation module, the abstract game tree module and its instantiations to Max-
imax and UCT.

GGP

This directory contains the code which translates GDL files into Toss format together
with various needed simplifications. Multiple tests and a Java GGP Server are also
included there to facilitate testing of the Toss-GGP code.
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Arena

Play GGP

Solver

Learn

Formula

RealQuantElim

Sat

Figure 6.1: Dependencies among Toss components.
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Server

In this directory we simply keep the implementation of TossServer together with
several high-level tests to check that it works ok.
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