
New Algorithm for Weak Monadic Second-Order
Logic on Inductive Structures

Tobias Ganzow and  Lukasz Kaiser

Mathematische Grundlagen der Informatik, RWTH Aachen University, Germany
{ganzow,kaiser}@logic.rwth-aachen.de

Abstract. We present a new algorithm for model-checking weak monadic
second-order logic on inductive structures, a class of structures of bounded
clique width. Our algorithm directly manipulates formulas and checks
them on the structure of interest, thus avoiding both the use of automata
and the need to interpret the structure in the binary tree. In addition to
the algorithm, we give a new proof of decidability of weak MSO on induc-
tive structures which follows Shelah’s composition method. Generalizing
this proof technique, we obtain decidability of weak MSO extended with
the unbounding quantifier on the binary tree, which was open before.

1 Introduction

Monadic second-order logic (MSO) is an extension of first-order logic in which
quantification over subsets of the universe is allowed. Using the connection to
automata, it was shown by Büchi that MSO is decidable on (ω,<) [1], and by
Rabin [2] that it is decidable on the infinite binary tree. Using interpretations,
this result has been extended from the binary tree to all structures of bounded
clique-width [3], showing that MSO is decidable on a large class of structures.

In practical applications such as verification of software systems or hardware,
the domain of interest is often finite but not a priori bounded in size, and thus
many verification problems can be naturally formalized in weak MSO, a fragment
of MSO which allows only quantification over finite subsets of the universe. The
best known tool for model-checking WMSO, Mona, has been used to verify
hardware [4] and pointer manipulating programs [5], and is part of software
verification systems. e.g. [6]. To use Mona for program verification it is necessary
to interpret the structure of interest in the binary tree, which is often a cause
of inefficiency. Moreover, since Mona is based on automata, it is challenging to
use it for verifying properties which mix terms from different theories.

These problems motivated us to devise an algorithm for weak MSO model-
checking, together with a proof of its correctness, that exploits logical tools and
structural aspects of the models rather than being based on automata. Our
algorithm works on the general class of inductive structures which comprise
classical structures such as (ω,<) and the binary tree as well as practically
relevant structures such as doubly-linked lists or lists of lists. Inductive structures
can in fact be encoded in the binary tree, but we avoid this both because it



is a source of inefficiency and because our algorithm can be easily formulated
directly for arbitrary inductive structures. Moreover, our algorithm is not based
on automata and in each step only manipulates a set of formulas. This makes it
well-suited to be a part of a larger verification system or SMT solver, since it is
amenable to Nelson-Oppen style combination with other theories.

In addition to the algorithm, we present a new proof of decidability of weak
MSO on inductive structures. Our proof follows the composition method, which
was used by Shelah [7] (see also [8]) to show decidability of unrestricted MSO on
(ω,<) and other countable linear orders, as well as by Läuchli [9] in his proof of
the decidability of the weak MSO theory of linear orders. Both proofs are based
on the enumeration of all types of a certain quantifier rank, and can therefore
not be used as a basis for an algorithm. As yet, the composition method has
not been generalized to unrestricted MSO on the binary tree, and the question
about a composition-based proof of decidability of MSO on the binary tree is, in
fact, considered a major open problem, because of its close relationship to the
challenge of understanding the algebraic structure of regular tree languages.

A thorough overview of applications of the composition method for obtaining
decidability results for MSO on various classes of structures is given in [10].
Furthermore, see [11] for an account on the evolution of the field.

We exploit that, in contrast to (ω,<), the weak MSO theory of the binary
tree is simpler than its unrestricted MSO theory, and show, using decompositions
of weak MSO formulas, that the model-checking problem for weak MSO on in-
ductively defined structures can be reduced to determining the winner of a finite
reachability game. However, the worst-case complexity of checking weak MSO
sentences on (ω,<) is already non-elementary. Therefore the decompositions of
the checked formula, and hence the game graph, can be huge. As the bound is
tight, this cannot be avoided in general, but a preliminary implementation of
the algorithm shows that the approach works on basic examples.

We also show that more general quantifiers can be integrated in our approach
by proving that WMSO with the unbounding quantifier, a logic which has re-
cently been shown to be decidable on labelings of (ω,<) [12], is also decidable
on inductive structures, in particular on the binary tree.

2 Preliminaries

A relational structure A = (A,RA
1 , . . . , R

A
K) over the signature τ = {R1, . . . , RK}

(where each Ri has an associated arity ri) consists of the universe A and relations
RA
i ⊆ Ari . We say that A ⊆ B if the universe A ⊆ B and each RA

i ⊆ RB
i .

For a subset B ⊆ A we define A ∩ B as the structure with universe B and
relations RA

i ∩ Bri . Two structures A and B are isomorphic if there exists a
bijection π : A → B between their universes such that (a1, . . . , ari) ∈ RA

i ⇐⇒
(π(a1), . . . , π(ari)) ∈ RB

i . We write [k] for the set {1, . . . , k}, and, for a given set
A, we write A∗ for the set of all finite sequences of elements of A.

Weak monadic second-order logic (WMSO) extends first-order logic by quan-
tification over finite subsets of the universe. In WMSO, first-order variables

2



x, y, . . . are interpreted as elements, and set variables X,Y, . . . as finite subsets
of the universe. Set variables are capitalized to distinguish them from first-order
variables. The atomic formulas are Ri(x), x = y, x ∈ X, and ⊥ for false and
> for true. All other formulas are built from atomic ones by applying Boolean
connectives and universal and existential quantifiers for both kinds of variables.

2.1 Inductive Structures

We investigate weak monadic second-order logic on inductive structures. One way
to characterize such structures is using the notion of bounded clique-width de-
composition: inductive structures admit a bounded clique-width decomposition
with regular labels. However, to remain self-contained and due to the way our
algorithms work, we give another definition using a system of equations, similar
to the definition of vertex replacement (VR) graphs but strictly monotone.

In the following, we will frequently speak of indexed structures and indexed
elements. The latter are elements paired with a finite word (called index) over
a specific alphabet Σ. An indexed structure consists of a universe of indexed
elements. We usually identify a plain structure with the indexed structure in
which all elements are indexed by ε (i.e. the empty word).

Definition 1. Given, for each Ri ∈ τ , a function fi : {1, . . . , k}ri → {⊥,>},
and indexed structures A1, . . . ,Ak over Σ ⊇ [k], we define the (k-ary) disjoint
sum with connections B = (B,RB

1 , . . . , R
B
k ), denoted

⊕
f (A1, . . . ,Ak), by:

– B := {(a, jw) : (a,w) ∈ Aj , j ∈ [k]} and

–
(
(b1, j1w1), . . . , (bri , jriwri)

)
∈ RB

i if

– |{j1, . . . , jri}| = 1 and (b1, . . . , bri) ∈ R
Aj1
i or

– |{j1, . . . , jri}| > 1 and fi(j1, . . . , jri) = >.

That is, B is constructed by taking the disjoint union of the structures Aj ,
and adding tuples spanning multiple components according to the given func-
tions fi. It is implicit in the definition that unary relations are only inherited
from the components, whereas only at least binary relations are augmented
with additional tuples. Intuitively, the indices keep track of the origin of ele-
ments. We let B[j] := B ∩ {(b, w) ∈ B : w = jw′} denote the j-th compo-
nent of the disjoint sum. Note that, as expected, B[j] is isomorphic to Aj via
πj : (b, jw′) 7→ (b, w′). Furthermore, defining B[ε] := B, the notation naturally
extends to B[wj] := (B[w])[j] = B ∩ {(b, v) ∈ B : v = wjw′}.

Example 2. Given f(1, 2) = > and f(i, j) = ⊥ otherwise, •

• ⊕f •

•
= •1

•1

•2

•2

.

Definition 3. A system of structure equations D over τ has the form

D =


Λ1 = A1

1 ⊕ A1
2 ⊕ . . . ⊕ A1

k1
with f11 , . . . , f

1
K

...
...

...
Λn = An1 ⊕ An2 ⊕ . . . ⊕ Ankn with fn1 , . . . , f

n
K

3



where each Aij is either a finite structure or one of the formal variables Λ1, . . . , Λn

and each f ij is a function {1, . . . , ki}rj → {⊥,>}. We write λ(i, j) = m if

Aij = Λm and λ(i, j) = Fin otherwise. Let B = (B1, . . . ,Bn) be relational
structures to substitute for variables on the right-hand side of D. Then, we define
the new left-hand side structures (C1, . . . ,Cn) = D(B) by:

Ci =
⊕

fi
(D1, . . . ,Dki) where Dj =

{
Aij if λ(i, j) = Fin,

Bk if λ(i, j) = k .

We say that a tuple B of structures satisfies D if D(B) = B. Observe that the
operator B 7→ D(B), mapping n-tuples of structures to new n-tuples of struc-
tures as defined above, is monotone since it only adds elements to the universe
and tuples to relations. Hence, it has a unique least fixed-point (A1, . . . ,An), i.e.
a minimal tuple of structures that satisfies D and which we refer to by S(D).
We denote the i-th structure of the fixed-point by Si(D), and we call a structure
A inductive if and only if there exists a system of equations D such that A is
isomorphic to some Si(D).

Let S(D) = (A1, . . . ,An). By definition, each Am is an indexed structure
over Σ = [max(k1, . . . , kn)] obtained as a (km-ary) disjoint sum

⊕
fm(Dj)j∈[km]

with additional tuples spanning components according to D, and hence, for each
j = 1, . . . , km, the component Am[j] is either isomorphic to the finite structure
Amj given in D if λ(m, j) = Fin or to Aλ(m,j) otherwise. For easier referencing,
we will partition the sets of indices into Fini = {j : λ(i, j) = Fin}, and ∆i = {j :
λ(i, j) 6= Fin}. Furthermore, for an indexed element (a,w) ∈ Ai, the depth of
(a,w) ∈ Ai is defined as dpi(a,w) = |w|, and the depth of a set is the maximal
depth of its elements, dpi(S) = max{dpi(s) : s ∈ S}.

Example 4. The system defining the infinite binary tree T2 with prefix ordering
and unary predicates S0 and S1 for the left and right successor is:

Λ1 =
(
{•}, S0 = ∅, S1 = ∅, < = ∅

)
⊕ Λ2 ⊕ Λ3 with f<

Λ2 =
(
{•}, S0 = {•}, S1 = ∅, < = ∅

)
⊕ Λ2 ⊕ Λ3 with f<

Λ3 =
(
{•}, S0 = ∅, S1 = {•}, < = ∅

)
⊕ Λ2 ⊕ Λ3 with f<

where f<(i, j) = > if i = 1 and j ∈ {2, 3} and ⊥ in all other cases. Note that,
by definition, the functions must be given only for tuples where at least two
arguments differ. Therefore we give no functions for S0 and S1—predicates are
determined solely by the right-hand side structures, as depicted in Figure 1.

As another example, we give a system defining a list of lists with two order
relations, S on the primary list and L on the other lists, as depicted in Figure 2.

Λ1 =
(
{•}, RL = ∅, RS = ∅

)
⊕ Λ1 ⊕ Λ2 with f1L, f

1
S

Λ2 =
(
{•}, RL = ∅, RS = ∅

)
⊕ Λ2 with f2L, f

2
S

where f1L(1, 2) = f1S(1, 3) = > and f2L(1, 2) = >, and fkr (i, j) = ⊥ in other cases.
Observe that in both examples above a direct successor relation is definable

in WMSO from the constructed orderings.

4



•

• S0

• S0 • S1

• S1

• S0 • S1

...
...

...
...

S1(D)[2]
S1(D)[31]

Fig. 1. Inductive definition of the binary tree T2
∼= S1(D)

•

•

•

L

L

L

.

.

.

•

•

•

L

L

L

.

.

.

•

•

•

L

L

L

.

.

.

· · ·
S S

S

Fig. 2. Inductive definition of the infinite list of lists

2.2 Formulas with Restricted Variables

Intuitively, inductive structures are disjoint sums of other inductive structures
with added relation tuples, and thus naturally decompose into components.
When writing formulas over such structures, it is often convenient to restrict
specific variables to specific components of the universe. Here we introduce re-
lated notions and a procedure to split variables so as to convert a formula into
one that only contains variables restricted to disjoint parts of the universe.

Formulas with restricted variables of k kinds are defined in the same way as
WMSO formulas, but in addition to the standard first- and second-order vari-
ables x1, x2, . . . and X1, X2, . . . we allow to write restricted variables xi1, x

i
2, . . .

and Xi
1, X

i
2, . . . for i = 1, . . . , k. (We use superscripts to distinguish restricted

variables.) Given a structure A, a partition of the universe A = A1∪· · ·∪Ak into
k pairwise disjoint sets A1, . . . , Ak gives rise to the so-called partitioned structure
A〈A1,...,Ak〉. We interpret formulas with restricted variables on such partitioned

structures, and intuitively xi and Xi are understood as referring only to the
i-th component Ai. More formally, we define the semantics of formulas with re-
stricted variables on structures with partitioned universe in the standard way,
with the additional rule that A〈A1,...,Ak〉 |= ∃Xiϕ(Xi) if and only if there exists

a U ⊆ Ai (instead of a U ⊆ A) for which A〈A1,...,Ak〉 |= ϕ(U). The definition

5



for ∀Xi and first-order quantification is analogous. The interpretation of free
restricted variables follows the same intuition, however, for the sake of clarity,
we only allow free second-order variables.

Quantifier rank of formulas plays an important role in our proofs, and we
extend this notion to formulas with restricted variables. Classically, the quantifier
rank of a formula ϕ, qr(ϕ), is defined to be 0 if ϕ is an atomic formula, the
maximum of the quantifier ranks of the conjuncts if ϕ is a Boolean combination
and the rank of the quantified formula plus 1 if ϕ starts with a quantifier. We
extend this notion to a formula ϕ with restricted variables so that qri(ϕ) counts
only the nesting of quantified variables restricted to i:

– qri(ϕ) = 0 if ϕ is an atomic formula,
– qri(¬ϕ) = qri(ϕ),
– qri(ϕ) = max(qri(ψ), qri(ϑ)) if ϕ = ψ ∧ ϑ or ϕ = ψ ∧ ϑ,

– qri(∃Xjϕ) = qri(∃xjϕ) = qri(∀Xjϕ) = qri(∀xjϕ) =

{
qri(ϕ) + 1 if j = i

qri(ϕ) otherwise.

Finally, the restricted quantifier rank qr∗(ϕ) is defined as the maximum over
quantifier ranks restricted to the components: qr∗(ψ) = max{qri(ψ) : 1 ≤ i ≤ k}.

2.3 Splitting Variables

Each formula of monadic second-order logic (with free second-order variables
only) can be transformed into an equivalent formula in which all variables are
restricted. The procedure splitk below computes, for a formula ϕ with variables

X,x and a fixed k, a formula ψ with variables X
i
, xi, i = 1, . . . , k such that

A, V |= ϕ if and only if A〈A1,...,Ak〉, V |= ψ for any partition A1, . . . , Ak of the

universe of A and any interpretation of the free second-order variables by sets V ;
if a free variable X is assigned the set V , then the corresponding restricted
variables Xi are assigned the sets V ∩ Ai. In the notation used in procedure
splitk, we allow to substitute a sum, e.g. X ∪ Y for a second-order variable Z.
This should be understood as replacing each atom z ∈ Z by z ∈ X ∨ z ∈ Y (and
Z ← ∅ means substituting z ∈ Z by ⊥).

By induction on the structure of the formulas and using the above definition
of splitk(ϕ), we directly obtain the following lemma.

Lemma 5. For every weak MSO formula ϕ with free monadic second-order
variables only, every structure A, every partition (A1, . . . , Ak) of the universe
of A, and every assignment of sets V to the free second-order variables of ϕ,
we have (A, V ) |= ϕ if and only if (A〈A1,...,Ak〉, V ) |= splitk(ϕ). Moreover,
qr∗(splitk(ϕ)) ≤ qr(ϕ).

3 Decomposing Formulas

Given a system of equations which defines an inductive structure, we can decom-
pose a WMSO formula into a Boolean combination of formulas to be checked on
the constituent structures.

6



Procedure splitk(ϕ)

case ϕ contains a free (unrestricted) variable X return splitk(ϕ[X ←
⋃

iX
i]);

case ϕ is an atom return ϕ;
case ϕ = ¬ψ return ¬splitk(ψ);
case ϕ = ϕ1 ∨ ϕ2 return splitk(ϕ1) ∨ splitk(ϕ2);
case ϕ = ϕ1 ∧ ϕ2 return splitk(ϕ1) ∧ splitk(ϕ2);

case ϕ = ∃xψ return
∨

i=1,...,k ∃x
isplitk(ψ)[x← xi];

case ϕ = ∀xψ return
∧

i=1,...,k ∀x
isplitk(ψ)[x← xi];

case ϕ = ∃Xψ return ∃X1 . . . Xksplitk(ψ)[X ←
⋃

iX
i];

case ϕ = ∀Xψ return ∀X1 . . . Xksplitk(ψ)[X ←
⋃

iX
i];

Definition 6. Let D be a system of n structure equations such that ki structures
appear on the right-hand side of the i-th equation. Let S(D) = (A1, . . . ,An) and
let ϕ be a WMSO formula with free variables X1, . . . , Xr (note that it has no free
first-order variables). For each m ∈ [n], a Dm-decomposition of ϕ is a sequence
of k-tuples (k = km) of formulas (ψ1

1 , . . . , ψ
1
k), . . . , (ψl1, . . . , ψ

l
k) such that the free

variables of each ψij are included in X1, . . . , Xr, qr(ψij) ≤ qr(ϕ), and

Am, V |= ϕ ⇐⇒ for some i ∈ [l] and each j ∈ [k] Am[j], V ∩ Am[j] |= ψij .

The following theorem is the main result used to prove the correctness of our
algorithm. Let us remark that it can be obtained from more general composition
theorems of Shelah [7], but those theorems do not yield a practical algorithm.

Theorem 7. For every WMSO formula ϕ, system of n structure equations D,
and m ∈ [n], there exists an effectively computable Dm-decomposition of ϕ.

Note that our notion of Dm-decompositions corresponds to reduction se-
quences introduced by Feferman and Vaught for FO. An example of how to
compute these for MSO in a special case was described in [11]. The rest of this
section is devoted to a proof of the above theorem in a more general setting
which yields a basic building block for the model-checking algorithm. Towards
this, we introduce a new normal form of WMSO formulas, which we call TNF,
the type normal form. TNF is in a sense a converse of the prenex normal form
since quantifiers are pushed as deep inside the formulas as possible.

3.1 Type Normal Form

For a set of formulas Φ we denote by B+(Φ) all positive Boolean combinations
of formulas from Φ, i.e. formulas given by B+(Φ) = Φ | B+(Φ)∨B+(Φ) | B+(Φ)∧
B+(Φ). A formula is in TNF if and only if it is a positive Boolean combination
of formulas of the following form

τ = Ri(x) | ¬Ri(x) | x = y | x 6= y | x ∈ X | x /∈ X
| ∃xB+(τ) | ∃XB+(τ) | ∀xB+(τ) | ∀XB+(τ)

7



satisfying the following crucial constraint: in ∃xB+(τi), ∃XB+(τi), ∀xB+(τi),
and ∀XB+(τi) the free variables of each τi appearing in the Boolean combination
must contain x, or respectively X.

We claim that for each formula ϕ there exists an equivalent formula ψ
in TNF such that qr(ψ) ≤ qr(ϕ) (and qr∗(ψ) ≤ qr∗(ϕ) for formulas with
restricted variables) and the set of atoms of ψ is a subset of the atoms of
ϕ. The procedure TNF(ϕ) computes such a formula ψ given a formula ϕ in
negation normal form. Note that it uses sub-procedures DNF and CNF which,
given a Boolean combination of formulas, convert it to disjunctive or conjunc-
tive normal form. As an example, consider ϕ = ∃x

(
P (x) ∧ (Q(y) ∨ R(x))

)
;

TNF(ϕ) =
(
Q(y) ∧ ∃xP (x)

)
∨ ∃x

(
P (x) ∧R(x)

)
.

Theorem 8. The formula ψ = TNF(ϕ) is in TNF, equivalent to ϕ, its atoms
and free variables are included in the ones of ϕ and qr(ψ) ≤ qr(ϕ). If ϕ contains
restricted variables, then qr∗(ψ) ≤ qr∗(ϕ).

Proof. We proceed inductively on the structure of ϕ. For literals all the claims
are trivial since TNF is an identity. For Boolean combinations of formulas, the
procedure TNF only calls itself recursively, thus all claims of the theorem follow
inductively as well.

Consider the case when ϕ = ∃xψ and DNF(TNF(ψ)) =
∨
i(
∧
j ψ

i
j). We convert

TNF(ψ) to disjunctive normal form in this case since the existential quantifier
is distributive over disjunction, and thus TNF(ϕ) ≡

∨
i(∃x

∧
j(ψ

i
j)). Since quan-

tifiers are also distributive over formulas which do not contain the quantified

variable, we get that the result,
∨
i

(∧
j∈Ji ψ

i
j ∧ ∃x(

∧
j 6∈Ji ψ

i
j)
)

, is equivalent to

∃xTNF(ψ), and thus by inductive hypothesis also to ϕ. Since each formula ψij is,
by inductive hypothesis, in the form τ , to show that the result is in TNF we only
need to check that ∃x(

∧
j∈Ji ψ

i
j) is in the form τ . Syntactically this is trivial,

and the constraint on variables in the TNF is indeed satisfied by the choice of
Ji. The set of atoms does not increase by inductive hypothesis, and no new free
variables appear by the choice of Ji. Furthermore, neither the quantifier rank
nor the rank over any restricted variable increases. The case of universal quan-
tification is analogous, modulo conversions between disjunctive and conjunctive
normal forms (we assume that CNF and DNF do not create new atoms). ut

We will use the following important property of formulas in TNF.

Procedure TNF(ϕ)

case ϕ is a literal return ϕ;
case ϕ = ϕ1 ∨ ϕ2 return TNF(ϕ1) ∨ TNF(ϕ2);
case ϕ = ϕ1 ∧ ϕ2 return TNF(ϕ1) ∧ TNF(ϕ2);

case ϕ = ∃xψ (or ∃Xψ) and DNF(TNF(ψ)) =
∨

i(
∧

j ψ
i
j)

Let Ji = {j | x ∈ free(ψi
j)}; return

∨
i

(∧
j 6∈Ji

ψi
j ∧ ∃x(

∧
j∈Ji

ψi
j)
)

;

case ϕ = ∀xψ (or ∀Xψ) and CNF(TNF(ψ)) =
∧

i(
∨

j ψ
i
j)

Let Ji = {j | x ∈ free(ψi
j)}; return

∧
i

(∨
j 6∈Ji

ψi
j ∨ ∀x(

∨
j∈Ji

ψi
j)
)

;

8



Lemma 9. Let ϕ be a formula in TNF and V1, . . . , Vn pairwise disjoint sets of
variables such that if two variables appear in the same atom in ϕ, these variables
belong to the same Vi. Then ϕ is a Boolean combination of formulas τ such that
each τ contains only atoms with variables from one of the sets Vi.

Proof. By contradiction, assume that there exists a formula ϕ in TNF which does
not satisfy the above condition. Take such formula with smallest size (measured
simply as the number of symbols). Then ϕ consists of only a single τ , since from a
Boolean combination of more τ ’s one could choose a single one with atoms from
different sets. Additionally, each sub-formula of ϕ satisfies the above lemma.

By assumption, ϕ = τ is not an atom, thus it is of the form ∃XB+(τi) or
∀XB+(τi) (or of the same form for first-order quantification). Each τi contains
atoms only from a single set Vji , since otherwise it would be a smaller counter-
example to the lemma and we have chosen τ as the smallest one. But, by the
constraint on TNF, we know that X is contained in the free variables of each
τi, and thus in each Vji . Since the sets Vi are pairwise disjoint, all ji must be
the same. This contradicts the assumption that τ contains atoms with variables
from different sets Vi. ut

3.2 Formula Decomposition Algorithm

Let ϕ be a formula with only second-order free variables X1, . . . , Xs and let D
be a system of n structure equations

D =


Λ1 = A1

1 ⊕ A1
2 ⊕ . . . ⊕ A1

k1
with f11 , . . . , f

1
K

...
...

...
Λn = An1 ⊕ An2 ⊕ . . . ⊕ Ankn with fn1 , . . . , f

n
K

with S(D) = (A1, . . . ,An). For each m ∈ [n], the Dm-decomposition of ϕ can be
computed by performing the following steps:

(1) compute ψm = splitkm(ϕ);

(2) compute ϑm from ψm by replacing each atom xj ∈ Xk or xj = xk with ⊥
if j 6= k and each atom Ri(x

j1
1 , . . . , x

jri
ri ) such that not all jl are equal with

fmi (j1, . . . , jri);
(3) compute DNF(TNF(ϑm)) =

∨
i

∧
j τi,j .

We show that these steps indeed yield a Dm-decomposition. By Lemma 5 and
the definition of WMSO semantics we get that Am, P |= ϕ ⇐⇒ Am, P

j |= ψm,
where P ji = Pi∩Am[j]. Considering Step 2 of the algorithm, by the semantics of
WMSO with restricted variables and the definition of S(D) we further get that
Am, P

j |= ψm ⇐⇒ Am, P
j |= ϑm.

After this simplification step, all variables occurring in the same atomic sub-
formula in ϑm are restricted to the same component, and by Lemma 9, each
subformula τi,j in DNF(TNF(ϑm)) =

∨
i

∧
j τi,j contains only atoms (and thus

also quantifiers) with variables restricted to a single component. Let ψik be the

9



conjunction of all τi,j containing variables restricted to the component k ∈ [kl],
or > if no such τi,j occurs. Clearly TNF(ϑm) is equivalent to

∨
i(
∧
k ψ

i
k), and

combining this with the previous equivalences we get that

Am, P |= ϕ ⇐⇒ Am, P
j |=

∨
i

(
∧
k

ψik).

To show that ψik with restricted variables Xk, xk replaced by the stan-
dard ones X,x is a Dm-decomposition of ϕ, it only remains to prove that
qr(τi,j) ≤ qr(ϕ) for all i, j. Observe that, by Lemma 5, we have qr∗(ψm) ≤ qr(ϕ).
Replacing atoms does not change the quantifier rank, and by Theorem 8 we
get that qr∗(TNF(ϑm)) ≤ qr∗(ψm). But since each τi,j contains only quan-
tification over variables from one component, we obtain that qr∗(TNF(ϑm)) =
maxi,j qr(τi,j) ≤ qr(ϕ). This finally concludes the proof of Theorem 7.

4 Model Checking Algorithm

Our algorithm for model checking weak MSO sentences (i.e. formulas without
free variables) on Sm(D) operates as follows.

– The only atomic sentences > and ⊥ are verified trivially.

– Boolean combinations are verified by checking the subformulas and combin-
ing the results accordingly.

– Formulas of the form ∃Xϕ(X) or ∃xϕ(x) are checked on Sm(D) by deter-
mining the winner of the finite reachability game G∃(ϕ,m) presented below.

– For formulas of the form ∀Xϕ(X) or ∀xϕ(x) we check the equivalent formula
¬∃X¬ϕ(X) or ¬∃x¬ϕ(x), respectively, instead by determining the loser of
the game G∃(¬ϕ,m).

The main part of our model checking algorithm consists of establishing the
winner of the following finite reachability game, which is based on the idea of
decomposing formulas and on Theorem 7.

Definition 10. Let ∃Xϕ(X) be a sentence, Φ = {ψ | qr(ψ) ≤ qr(ϕ), free(ψ) ⊆
{X}}, and let D be a system of n structure equations. The two-player game
G∃(ϕ,m) is played by the Verifier, who tries to show that Sm(D) |= ∃Xϕ(X),
against the Falsifier, who tries to disprove this. G∃(ϕ,m) is defined as follows.

– Positions of Verifier: { [ψ, i] | ψ ∈ Φ, i ∈ [n]}.
– Positions of Falsifier: { [(ψ1, . . . , ψki), S, i] | ψj ∈ Φ, S ⊆

⋃
j∈Fini

Ai[j]}.
– Initial position: [ϕ, i].

– Terminal positions:

{ [Aij , ψj , S, i] | λ(i, j) = Fin, ψj ∈ Φ} and { [ϕ[X ← ∅], i] | ϕ ∈ Φ, i ∈ [n]}

10



– Moves: [ϕ, i]
V−→ [ϕ[X ← ∅], i],

[ϕ, i]
V−→ [(ψ1, . . . , ψki), S, i], for each tuple (ψ1, . . . , ψki) in

the Di-decomposition of ϕ, and

[(ψ1, . . . , ψki), S, i]
F−→

{
[Aij , ψj , S, i] if λ(i, j) = Fin

[ψj , `] if λ(i, j) = `.

– Winning condition: Verifier wins at a terminal position [Aij , ψj , S, i] if and
only if (Si(D)[j], S ∩ Si(D)[j]) |= ψj(X). At a position [ϕ[X ← ∅], i] the
Verifier wins if and only if Si(D) |= ϕ[X ← ∅]. Falsifier wins infinite plays.

Since the quantifier rank of the formulas in the decomposition tuples is
bounded by the quantifier rank of ϕ and there are only finitely many non-
equivalent formulas with fixed quantifier rank, Φ is finite. Furthermore, the size
of the sets chosen by Verifier is bounded by the size of the structures in D, and
hence the arena of G∃(ϕ,m) is finite.

Theorem 11. Verifier wins the game G∃(ϕ,m) if and only if Sm(D) |= ∃Xϕ(X).

Proof. We prove that there is a direct correspondence between winning strategies
for Verifier and finite sets satisfying formulas.

(⇐) Let (A1, . . . ,An) = S(D) and assume that Am |= ∃Xϕ(X). Let S be a
finite set such that Am, S |= ϕ. We prove the existence of a winning strategy for
Verifier by induction on the depth of S.

Let dp(S) = 1, i.e. S ⊆
⋃
j∈Finm Am[j]. By Theorem 7 there exists a Dm-

decomposition (ψ1
1 , . . . , ψ

1
km

), . . . , (ψr1, . . . , ψ
r
km

) of ϕ and an index ` ∈ [r] such

that (Am[j], S ∩Am[j]) |= ψ`j for all j ∈ [km]. Since dp(S) = 1, all elements in S
are from the finite components of Am, i.e. S∩

⋃
j∈∆m Am[j] = ∅, and Aλ(m,j), ∅ |=

ψj for all j ∈ ∆m. Hence, Verifier wins by moving to [(ψ`1, . . . , ψ
`
km

), S,m]: Fal-

sifier cannot win by moving to a position [Am[j], ψ`j , S,m], for j ∈ Finm, and

from any position [ψ`j ], for j ∈ ∆m, Verifier can move to [ψ`j [X ← ∅], λ(m, j)]
and win.

Let dp(S) > 1 and let (ψ1
1 , . . . , ψ

1
km

), . . . , (ψr1, . . . , ψ
r
km

) be the Dm-decompo-

sition of ϕ. Choose ` ∈ [r] such that (Am[j], S∩Am[j]) |= ψ`j for all j ∈ [km]. Let

S0 = S∩
⋃
j∈Finm Am[j]. We show that Verifier wins from [(ψ`1, . . . , ψ

`
km

), S0,m].

If Falsifier chooses j ∈ Finm and moves to [Am[j], ψ`j , S0,m], then Verifier wins

because (Am[j], S∩Am[j]) |= ψ`j . If Falsifiers chooses j ∈ ∆m, then we have that

dpj
(
πj((S \ S0)∩Am[j])

)
< dpj(S) (where πj : (s, jw) 7→ (s, w)), i.e. the depth

of the remaining elements decreases upon descending into the j-th component.
Since (Am[j], S0 ∩ Am[j]) |= ψ`j , applying the inductive hypothesis to positions

[ψ`j , λ(m, j)] for each j ∈ ∆m we get that Verifier wins again.
(⇒) Assume that Verifier has a strategy to win the game from the initial po-

sition [ϕ(X),m]. Since all plays won by Verifier are finite, unraveling the game
graph and removing branches that do not correspond to moves taken by Verifier’s
winning strategy, we obtain a finite tree representing all possible plays of Falsifier

11



against the fixed winning strategy of Verifier. The leaves of this tree are posi-
tions of the form [Aij , ψj , S, i] or [ψ[X ← ∅], i]. We label the edges of the tree as
follows: Edges representing Verifier’s moves are labeled with ε; edges represent-
ing Falsifier’s moves are labeled with letters from {1, . . . , ki} corresponding to

which part of the tuple Falsifier chooses, i.e. [(ψ1, . . . , ψki), S, i]
j−→ [Ai[j], ψj , S]

or [(ψ1, . . . , ψki), S, i]
j−→ [ψj , λ(i, j)].

For each of Verifier’s positions p = [ψ, i] in the tree, we define the set S(p)
as the unique set which satisfies

S(p) ∩ Ai[w] = S′ ⇐⇒ a leaf [Aw, ·, S′, ·] is reachable from p via labels w

(note that the structure Aw in the leaf, being one of the finite structures in D,
is actually isomorphic to Ai[w]). Intuitively, this set is obtained by combining
all structures in reachable leaves after appropriately indexing their elements by
the path w leading to them. We prove by induction on the height of positions in
the tree that Ai, S([ϕ, i]) |= ϕ holds for each position [ϕ, i].

Let h([ϕ, i]) = 0. Then the only successor is the leaf [ϕ[X ← ∅], i], therefore
S([ϕ, i]) = ∅ and by definition (Ai, ∅) |= ϕ.

Let h([ϕ, i]) > 0. Then the only successor position [(ψ1, . . . , ψki), S, i] has suc-
cessors [Ai[j], ψj , S

′
j , i] (leaves), and [ψj , λ(i, j)] with h([ψj , λ(i, j)]) < h([ϕ, i]).

By induction hypothesis, (Aλ(i,j), S([ψj , λ(i, j)])) |= ψj for all j ∈ ∆i, and since
we assume that Verifier plays a winning strategy, (Ai[j], S

′
j) |= ψj for j ∈ Fini.

Due to Theorem 7 we conclude that (Ai, S([ϕ, i])) |= ϕ. Considering the initial
position [ϕ,m] we obtain (Am, S([ϕ,m])) |= ϕ, and hence Am |= ∃Xϕ(X). ut

As presented, the model checking algorithm works in a top-down fashion and
relies on solving finite reachability games. To establish the winner at positions of
the form [ψ[X ← ∅], j] in G∃(ϕ, i), we have to solve the model checking problem
for the formula ψ[X ← ∅], but note that ψ[X ← ∅] has less variables and a
smaller quantifier rank than ∃Xϕ(X). Hence, the algorithm actually terminates.

Concerning the handling of existential first-order quantifiers there are two
feasible approaches. By introducing a few special predicates for the subset re-
lation and for expressing that a set is a singleton, one can avoid the use of
first-order variables in the first place. On the other hand, the game can be eas-
ily modified to capture first-order quantification: Intuitively, instead of sets S,
Verifier chooses either an element from one of the finite structures or announces
in which of the inductively defined components the element is to be found.

5 Unbounding and Generalized Quantifiers

Many standard quantifiers, such as “there exists exactly one”, do not increase the
expressive power of MSO. One interesting exception is the unbounding quantifier:
UXϕ expresses that the size of finite sets X satisfying ϕ is unbounded, i.e.

UXϕ(X) ≡ for all n ∈ N ∃Xϕ(X) with X finite and |X| ≥ n.

12



First introduced in [13], MSO with this quantifier was proven to be decidable on
trees only with very restricted quantification patterns. Recently, only a technical
analysis of max-automata allowed to show that satisfiability of WMSO with the
unbounding quantifier is decidable on the class of all labelings of (ω,<) [12]. We
prove that WMSO+U is decidable on all inductive structures, which is a more
general result as far as the class of structures is concerned, but it is less general
as we allow only finite labelings of the structures. For our proof, we only need to
extend the algorithm presented above. Again, we fix a system D of n equations
and let S(D) = (A1, . . . ,An).

Definition 12. A family U = {Si | i ∈ N} of finite sets is called unbounded in
a component Am[j] if {i | Am[j] ∩ Si 6= ∅} is infinite.

The following lemma is a consequence of the fact that our equations contain
only a bounded number of structures.

Lemma 13. Let U = {Si | (Am, Si) |= ϕ(X), |Si| ≥ i} be a family of sets wit-
nessing that Am |= UXϕ(X). Then U is unbounded in some component Am[j].

The above lemma, applied to k components, justifies the following extension
of the splitk procedure to the case ϕ = UXψ (X−j denotes X without Xj):

splitk(ϕ) =
∨

j=1,...,k

∃Xi−jUX
jsplitk(ψ)[X ←

⋃
i

Xi].

The unbounding quantifier distributes over disjunctions, and the definition of
TNF and the conversion procedure for U is the same as for ∃. Thus, the theorem
about D-decompositions holds for WMSO+U as well.

To check WMSO+U, we proceed as for WMSO and instead of asking whether
there exists a winning strategy, we impose different conditions on the set of all
winning strategies of Verifier in the game.

Definition 14. The game GU (ϕ,m) is defined as G∃(ϕ,m) with only one ad-
dition: Falsifier’s positions [(ψ1, . . . , ψn), S, i] with S 6= ∅ are considered to be
marked.

By Tσ(ϕ, i) we denote the unraveling of the game graph from position [ϕ, i]
where all branches that are not chosen by Verifier’s strategy σ are pruned.

Theorem 15. Am |= UXϕ(X) if and only if for each n ∈ N, Verifier has a
winning strategy σn such that Tσn(ϕ,m) contains at least n marked positions.

Proof. (⇒) Let M be the maximum number of elements in the universe of all
finite structures appearing in D and assume that Am |= UXϕ(X). Thus, for each
n ∈ N there is a set Sn with |Sn| ≥ n such that Am, Sn |= ϕ(X). Following the
same arguments as in the proof of Theorem 11, each Sn gives rise to a winning
strategy σn for Verifier, namely “choose the upcoming elements of Sn.” Consider
the strategy σn·M . Since σn·M chooses elements from Sn·M , and at each marked
position at most M of those, it follows from |Sn·M | ≥ n ·M that there are at
least n marked positions in Tσn·M (ϕ,m).

13



(⇐) Given a winning strategy σ, we construct, as in the proof of Theorem 11,
a set Sσ satisfying ϕ. Consider a strategy σn with at least n marked positions in
Tσn(ϕ,m). Since each marked position corresponds to a choice of a non-empty
subset, and these subsets are disjoint, |Sσn | ≥ n. Hence, Am |= UXϕ(X) as we
have assumed the existence of a winning strategy for each n ∈ N. ut

For a reachability game with a finite arena, the above condition, i.e. the
existence of winning strategies which result in game trees containing arbitrarily
many marked positions, can be verified by a basic graph algorithm. Including
any such procedure into our model checking algorithm, we obtain a procedure
for model checking WMSO+U formulas on arbitrary inductive structures.

6 Implementation

We implemented a prototype in OCaml interfacing to MiniSat for performing
CNF ↔ DNF conversions following the idea described in [14]. The implementa-
tion1 is functional but still leaves much room for improvement and optimization.

For a comparison with Mona we ran two tests—checking simple formulas
of Presburger arithmetic taken from the examples shipped with Mona, and
artificially constructed Horn formulas of the form

ϕn := ∃X∀x1 . . . ∀xn
(
(x1 ∈ X → x2 ∈ X) ∧ · · · ∧ (xn−1 ∈ X → xn ∈ X)

)
.

The results in Table 1 show that Presburger arithmetic presents no problem
for Mona since an automaton recognizing addition is fairly small and easy to
construct. For the prototype, the result depends on whether the constants are
encoded in the input formula (A) or in the structure equations (B). On the
other hand, the Horn formulas could be easily decomposed by our algorithm
whereas Mona soon reaches its limits, being only able to handle formulas up to
ϕ15. This supports our claim that there are verification problems that might be
better suited for a treatment on a logical level while there are others for which
automata theoretic approaches are adequate.

However, due to the lack of example formulas, not to mention a benchmark
suite, and the evident need for further optimization of our prototype, it is hard
to carry out a meaningful comparison.

Prototype A B Mona

∃x(2x = 9) 0.5 0.1 0.1
∃x(2x = 16) 3 0.6 0.1
∃x(2x = 24) 8 0.6 0.1
∃x(2x = 25) 7 0.1 0.1

Prototype Mona

ϕ14 0.1 7
ϕ15 0.1 17
ϕ100 0.3 –
ϕ500 12 –

Table 1. Comparison of the running times measured in seconds

1 Available from toss.sourceforge.net, SVN revision 1049, in Solver/

14



7 Future Work

Unlike advances in complementation and minimization techniques for automata,
which usually do not provide any new intuitions about the logical aspects of the
model-checking procedure, we think that, in addition to the pure algorithmic
value, our method can provide new insights into the composition method and
might help to understand the algebraic structure of tree languages definable in
weak MSO. Moreover, we aim at extending our method to further logics. Sim-
ilar to the presented modification of the game that yields a decision procedure
for WMSO+U, the game might be extended to capture other quantifiers. Addi-
tionally, we hope that our method can at least partially be extended to richer
fragments of MSO and, as a long term goal, give an insight into the structure of
tree languages definable in various fragments of MSO.

References

1. Büchi, J.R.: On a decision method in restricted second order arithmetic. In:
International Congress on Logic, Methodology and Philosophy of Science, Stanford
University Press (1962) 1–11

2. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141 (1969) 1–35

3. Courcelle, B.: The monadic second order logic of graphs, II: Infinite graphs of
bounded width. Mathematical System Theory 21 (1989) 187–222

4. Basin, D.A., Klarlund, N.: Hardware verification using monadic second-order logic.
In: Proceedings of CAV ’95. Volume 939 of LNCS., Springer (1995) 31–41

5. Jensen, J.L., Jørgensen, M.E., Klarlund, N., Schwartzbach, M.I.: Automatic veri-
fication of pointer programs using monadic second-order logic. In: Proceedings of
PLDI ’97. (1997) 226–236

6. Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative
programs. In: PLDI. (2009) 338–351

7. Shelah, S.: The monadic second order theory of order. Annals of Mathematics 102
(1975) 379–419

8. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In: Structures in Logic and Computer Science. Volume 1261 of
LNCS. Springer-Verlag (1997) 118–143

9. Läuchli, H.: A decision procedure for the weak second order theory of linear order.
In H. Arnold Schmidt, K.S., Thiele, H.J., eds.: Proceedings of the Logic Colloquium
1966. Volume 50. Elsevier (1968) 189–197

10. Blumensath, A., Colcombet, T., Löding, C.: Logical theories and compatible oper-
ations. In Flum, J., Grädel, E., Wilke, T., eds.: Logic and automata: History and
Perspectives. Amsterdam University Press (2007) 72–106

11. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of
Pure and Applied Logic 126.1-3 (2004) 159–213

12. Bojanczyk, M.: Weak MSO with the unbounding quantifier. In: Proceedings of
STACS ’09. Volume 09001 of LIPIcs., Schloss Dagstuhl (IBFI) (2009) 159–170

13. Bojanczyk, M.: A bounding quantifier. In: Proceedings of CSL ’04. Volume 3210
of LNCS., Springer (2004) 41–55

14. McMillan, K.L.: Applying sat methods in unbounded symbolic model checking.
In: Proceedings of CAV 2002. (2002) 250–264

15



Appendices

Note that throughout the whole appendix, we also allow free first-order variables
in formulas, and hence the definitions and notations differ from those used in
the main part of the paper.

Appendix A provides additional details concerning the formal semantics of
formulas with restricted variables and the rather technical proof of Lemma 5.
Appendix B refines the notion of a decomposition accounting for free first-order
variables which yields the basis for a game capturing first-order quantification
described in Appendix C, and thus completes the model-checking algorithm
described in Section 4.

A Formulas with Restricted Variables

A.1 Semantics

We formally define the semantics of τ -formulas with restricted variables of k
kinds by a translation into formulas over the expanded vocabulary τ̂ = τ ∪
{P 1, . . . , P k} where P i are unary predicates not contained in τ . Given a formula
ϕ with restricted variables, let ϕ̂ be the formula obtained from ϕ by replacing

xi = yj  x ∈ P i ∧ y ∈ P j ∧ x = y

R(xi11 , . . . , x
ir
r )  

( ∧
j=1,...,r

xj ∈ P ij
)
∧R(x1, . . . , xr),

xi ∈ Y j  x ∈ P i ∧ x ∈ P j ∧ x ∈ Y
∀xiϕ(xi)  ∀xi(xi ∈ P i → ϕ(xi)) [xi is a fresh variable]

∃xiϕ(xi)  ∃xi(xi ∈ P i ∧ ϕ(xi))

∀Xiϕ(Xi)  ∀Xi(Xi ⊆ P i → ϕ(Xi))

∃Xiϕ(Xi)  ∃Xi(Xi ⊆ P i ∧ ϕ(Xi)).

Note that the first three items are mainly important if the formula contains
free variables since the range of quantified variables is already appropriately
restricted by the guards. Given a τ -structure A and a partition of its universe
into k sets A1, . . . , Ak, we refer to A〈A1,...,Ak〉 as the partitioned structure, and

denote the τ̂ -expansion of A in which each P i is interpreted as the set Ai as usual
by (A, A1, . . . , Ak). The semantics of ϕ evaluated on a partitioned τ -structure
given an assignment β of the free first- and second-order variables is defined by
(A〈A1,...,Ak〉, β) |= ϕ if and only if (A, A1, . . . , Ak, β) |= ϕ̂. (Note that β is an
assignment of the free original variables, and not of each restricted occurrence!)

A.2 Splitting Variables

The following extended procedure splitk also handles free first-order variables.
Note that it is important that the replacement of the free variables is done first

16



Procedure splitk(ϕ)

case ϕ contains a free (unrestr.) FO-var. x return splitk(
∨

i=1,...,k ϕ[x← xi]);

case ϕ contains a free (unrestr.) MSO-var. X return splitk(ϕ[X ←
⋃

iX
i]);

case ϕ is an atom return ϕ;
case ϕ = ¬ψ return ¬splitk(ψ);
case ϕ = ϕ1 ∨ ϕ2 return splitk(ϕ1) ∨ splitk(ϕ2);
case ϕ = ϕ1 ∧ ϕ2 return splitk(ϕ1) ∧ splitk(ϕ2);

case ϕ = ∃xψ return
∨

i=1,...,k ∃x
isplitk(ψ)[x← xi];

case ϕ = ∀xψ return
∧

i=1,...,k ∀x
isplitk(ψ)[x← xi];

case ϕ = ∃Xψ return ∃X1 . . . Xksplitk(ψ)[X ←
⋃

iX
i];

case ϕ = ∀Xψ return ∀X1 . . . Xksplitk(ψ)[X ←
⋃

iX
i];

before splitting the rest of the formula. We obtain the following modified version
of the splitting lemma.

Lemma 16. For every structure A every partition (A1, . . . , Ak) of the universe
of A and every assignment β of the free variables occurring in ϕ, it holds that
A, β |= ϕ if and only if A〈A1,...,Ak〉, β |= splitk(ϕ). Moreover, qr∗(splitk(ϕ)) ≤
qr(ϕ).

Proof. We show the equivalence of the split formula by induction on the structure
of formulas.
Atomic formulas:

– ϕ = (x = y)

A, β |= x = y ⇐⇒ β(x) = β(y)

⇐⇒ ex. i, j ∈ [k] such that β(x) ∈ Ai, β(y) ∈ Aj , and β(x) = β(y)

⇐⇒ (A, A1, . . . , Ak, β) |=
∨

i=1,...,k

∨
j=1,...,k

x ∈ P i ∧ y ∈ P j ∧ x = y︸ ︷︷ ︸
translation of xi = yj

⇐⇒ (A〈A1,...,Ak〉, β) |=
∨

i=1,...,k

∨
j=1,...,k

xi = yj = splitk(ϕ)

– ϕ = R(x1, . . . , xr)

A, β |= R(x1, . . . , xr)

⇐⇒ (β(x1), . . . , β(xr)) ∈ RA

⇐⇒ ex. i1, . . . , ir such that

β(x1) ∈ Ai1 , . . . , β(xr) ∈ Air , and (β(x1), . . . , β(xr)) ∈ RA

⇐⇒ (A, A1, . . . , Ak, β) |=
∨

(i1,...,ir)∈[k]r

∧
j=1,...,r

xj ∈ P ij ∧R(x1, . . . , xr)︸ ︷︷ ︸
translation of R(x

i1
1 , . . . , x

ir
r )

⇐⇒ (A〈A1,...,Ak〉, β) |=
∨

(i1,...,ir)∈[k]r
R(xi11 , . . . , x

ir
r ) = splitk(ϕ)

17



– ϕ = x ∈ Y

A, β |= x ∈ Y
⇐⇒ ex. i ∈ [k] such that β(x) ∈ Ai, and β(x) ∈ β(Y )

⇐⇒ ex. i ∈ [k] such that β(x) ∈ Ai, and β(x) ∈
⋃
j

(β(Y ) ∩Aj)

⇐⇒ (A, A1, . . . , Ak, β) |=
∨

i=1,...,k

∨
j=1,...,k

x ∈ P i ∧ x ∈ P j ∧ x ∈ Y︸ ︷︷ ︸
translation of xi ∈ Y j

⇐⇒ (A〈A1,...,Ak〉, β) |=
∨

i=1,...,k

∨
j=1,...,k

xi ∈ Y j = splitk(ϕ)

Inductive step:

– If ϕ is a Boolean combination, the statement is obvious.
– ϕ = ∃xψ(x)

A, β |= ∃xψ(x)

⇐⇒ ex. a ∈ A such that A, β[x 7→ a] |= ψ(x)

⇐⇒ ex. i and a ∈ Ai such that A, β[x 7→ a] |= ψ(x)

⇐⇒ ex. i and a ∈ Ai such that A〈A1,...,Ak〉, β[x 7→ a] |= splitkψ(x)

⇐⇒ A〈A1,...,Ak〉, β |=
∨

i=1,...,k

∃xisplitkψ(xi)

– ϕ = ∀xψ(x)

A, β |= ∀xψ(x)

⇐⇒ for all a ∈ A, we have A, β[x 7→ a] |= ψ(x)

⇐⇒ for all i and a ∈ Ai, we have A, β[x 7→ a] |= ψ(x)

⇐⇒ for all i and a ∈ Ai, we have A〈A1,...,Ak〉, β[x 7→ a] |= splitkψ(x)

⇐⇒ A〈A1,...,Ak〉, β |=
∧

i=1,...,k

∀xisplitkψ(xi)

– ϕ = ∃Xψ(X)

A, β |= ∃Xψ(X)

⇐⇒ ex. S ⊆ A such that A, β[X 7→ S] |= ψ(X)

⇐⇒ ex. S1 ⊆ A1, . . . , Sk ⊆ Ak such that A, β[Xi 7→ Si] |= ψ[X ← ∪Xi]

⇐⇒ ex. S1 ⊆ A1, . . . , Sk ⊆ Ak

such that A〈A1,...,Ak〉, β[Xi 7→ Si] |= splitk(ψ[X ← ∪Xi])

⇐⇒ A〈A1,...,Ak〉, β |= ∃X1 . . . Xksplitk(ψ[X ← ∪Xi])

18



– ϕ = ∀Xψ(X)

A, β |= ∀Xψ(X)

⇐⇒ for all S ⊆ A, we have A, β[X 7→ S] |= ψ(X)

⇐⇒ for all S1 ⊆ A1, . . . , Sk ⊆ Ak, we have A, β[Xi 7→ Si] |= ψ[X ← ∪Xi]

⇐⇒ for all S1 ⊆ A1, . . . , Sk ⊆ Ak,

we have A〈A1,...,Ak〉, β[Xi 7→ Si] |= splitk(ψ[X ← ∪Xi])

⇐⇒ A〈A1,...,Ak〉, β |= ∀X1 . . . Xksplitk(ψ[X ← ∪Xi]) ut

B Decomposing Formulas with free FO-variables

Unlike in the case of free second-order variables, the notion of a decomposition
gets more complicated in the presence of free first-order variables since a variable
assignment of a first-order variable by an element from, say, the i-th component
of the structure cannot meaningfully interpret the restriction of the variable
to another component. However, by an adequate modification of the original
definition of a decomposition, we show that basically the same algorithm also
works for computing decompositions of formulas with free first-order variables.

Definition 17. Let D be a system of n structure equations such that ki struc-
tures appear on the right-hand side of the i-th equation. Let S(D) = (A1, . . . ,An)
and let ϕ be a WMSO formula with free variables free(ϕ) = {x1, . . . , xr, X1, . . . , Xs}.
For each m ∈ [n], a Dm-decomposition of ϕ is a sequence of k-tuples (k = km)
of formulas (ψ1

1 , . . . , ψ
1
k), . . . , (ψl1, . . . , ψ

l
k) such that the free variables of each ψij

are included in free(ϕ), qr(ψij) ≤ qr(ϕ), and

Am, β |= ϕ ⇐⇒ for some i ∈ [l] and each j ∈ [k] Am[j], β̂j |= ψ̂ij .

where β is an assignment of the free first- and second-order variables, and β̂j is
a partial assignment defined as follows:

– β̂j is undefined for variables x such that β(x) 6∈ Am[j],

– β̂j(x) = β(x) otherwise, and

– β̂j(X) = β(X) ∩ Am[j].

Furthermore,

ψ̂ij =

{
⊥ if ψij contains a free variable x with β(x) 6∈ Am[j]

ψij otherwise .

The modification of the formulas ensures that all free first-order variables in
the ψij are actually interpreted by β̂j and captures the intuition that a first-order
variable cannot be assigned a value from different components at the same time.

Again our aim is to prove

19



Theorem 18. For every WMSO formula ϕ (with arbitrary free variables), ev-
ery system of n structure equations D, and m ∈ [n], there exists an effectively
computable Dm-decomposition of ϕ.

Towards this goal, we show that the same algorithm as presented in Sec-
tion 3.2 also yields a decomposition in the above sense, which only differs from
Definition 6 in presence of free FO-variables.

In the following, for a formula ϕ with free first-order variables {x1, . . . , xr}
and a tuple (c1, . . . , cr), we will use the notation ϕc to denote the formula ϕ[x1 ←
xc11 , . . . , xr ← xcrr ]). Furthermore, given an assignment β of the free first-order
variables, we denote by cβ = (c1, . . . , cr) the tuple of components such that
β(xi) ∈ Aci for i = 1, . . . , r.

The first step of the algorithm computes ψm = splitkm(ϕ). Assume that
ϕ contains the free variables x1, . . . , xr. Then, after splitting all first-order vari-
ables, we obtain

ψm =
∨

(c1,...,cr)∈[km]r

splitkm(ϕc)︸ ︷︷ ︸
ηcm

,

i.e. ψm contains, for every possible combination of components, a disjunct in
which each free variable is restricted to that specific component. Furthermore,
by Lemma 16, A, β |= ϕ ⇐⇒ A〈A1,...,Akm 〉, β |= splitkm(ϕ).

By the definition of the semantics in A.1, it is clear that a formula containing
a variable xj restricted to cj is evaluated to ⊥ under an assignment β with
β(xj) 6∈ Acj . Hence, for every assignment β, there is exactly one disjunct in
ψm that does not default to ⊥, and by the previous observation, we get in fact,
A, β |= ϕ ⇐⇒ A〈A1,...,Akm 〉, β |= splitkm(ϕcβ ).

Since the definition of the TNF does not impose constraints on occurrences
of free variables, the transformation TNF(ϕ(x)) indeed yields a formula with
the same free variables in TNF. Furthermore, by definition of the procedure
transforming formulas into TNF, TNF(ψm) = TNF(

∨
c η

c
m) =

∨
c TNF(ηcm), and

due to commutativity of disjunction also DNF(TNF(
∨
c η

c
m)) =

∨
c DNF(TNF(ηcm)).

As each disjunct represents a tuple of formulas in the sequence which we
claim to be a Dm-decomposition, this sequence can be seen as a concatenation
of subsequences—one for each formula ϕc.

By the definition of the semantics, it is clear that A, β |= ϕ if and only if
A, β |= ϕcβ . Let β be fixed, and assume that Am, β |= ϕ. By the same reasoning
as in Section 3.2, in the subsequence obtained from the decomposition of ϕcβ

there is a tuple (ψ1, . . . , ψkm) such that Am[j], β̂j |= ψ̂j for each j = 1, . . . , km.

(Note that in this case, β̂j(xi) = β(xi) and ψ̂j = ψj for all j ∈ [km].) On the

other hand, assume there is a tuple (ψ1, . . . , ψkm) such that Am[j], β̂j |= ψ̂j for
each j = 1, . . . , km, then this tuple must originate from the decomposition of
ϕcβ . Otherwise, ψ̂j = ⊥ for some j, contradicting the assumption. Hence, by the
semantical equivalence of the TNF and the splitting lemma, Am, β |= ϕcβ , and
by the above observation also Am, β |= ϕ.

Example 19. Consider the formula ϕ(x) = ∀y(x = y ∨ x < y) on the binary tree
as defined in Example 4. The decomposition is computed by first splitting the

20



formula:

ψ1(ϕ) =

3∨
i=1

split3(∀y(xi = y ∨ xi < y))

=

3∨
i=1

3∧
j=1

∀yj(xi = yj ∨ xi < yj) ,

and in the following simplification step, replacing atoms containing variables
from different components, the formula is reduced to ∀y1(x1 = y1 ∨ x1 < y1).
Hence, the decomposition is the singleton sequence

(
∀y(x = y ∨ x < y),>,>

)
.

This reflects the fact that, in order to fulfill the formula, the variable x must
be assigned an element from the first component of the structure (which leaves
the root node of the tree as the only possibility). Indeed, evaluating the formula
on the first component of the tree (i.e., the structure consisting of only the root
node) shows that ∃xϕ(x) holds in the binary tree.

C First-Order existential Game

Definition 20. Let ∃xϕ(x, y) be a formula, and β an assignment of all free
variables y. Let Φ = {ψ | qr(ψ) ≤ qr(ϕ), free(ψ) ⊆ {x, y}}, and let D be a
system of n structure equations. The two-player game G∃1(ϕ, β,m) is played by
the Verifier, who tries to show that Sm(D), β |= ∃xϕ(x, y), against the Falsifier,
who tries to disprove this. G∃1(ϕ, β,m) is defined as follows.

– Positions of Verifier: { [ψ, β, i] | ψ ∈ Φ, i ∈ [n]}.
– Positions of Falsifier: { [(ψ1, . . . , ψki), β, c, i] | ψj ∈ Φ, c ∈ [ki]}.
– Initial position: [ϕ, β, i].
– Terminal positions:

{ [Aij , ψj , β, c, i] | j 6= c, ψj ∈ Φ}
{ [Aij , ψj , β, c, i] | λ(i, j) = Fin, ψj ∈ Φ} and

{ [ϕ, β[x 7→ a], i] | ϕ ∈ Φ, i ∈ [n], a ∈
⋃

j∈Fini

Ai[j]}

– Moves: [ϕ, β, i]
V−→ [ϕ, β[x 7→ a], i]

[ϕ, β, i]
V−→ [(ψ1, . . . , ψki), β, c, i], for each tuple (ψ1, . . . , ψki)

in the Di-decomposition of ϕ, and

[(ψ1, . . . , ψki), β, c, i]
F−→

{
[Aij , ψj , β, c, i] if λ(i, j) = Fin

[ψj , β, `] if λ(i, j) = `.

– Winning condition: Falsifier wins at a terminal position [Aij , ψj , β, c, i] if

x ∈ free(ψj). If x 6∈ free(ψj), then Verifier wins if and only if Aij , β |= ψj. At
a position [ϕ, β[x 7→ a], i] Verifier wins if and only if Si(D), β[x 7→ a] |= ϕ(x).
Infinite plays are won by Falsifier.

21



Since the quantifier rank of the formulas in the decomposition tuples is
bounded by the quantifier rank of ϕ and there are only finitely many non-
equivalent formulas with fixed quantifier rank, Φ is finite. Furthermore, there
are only finitely many possible elements for Verifier to choose, and hence the
arena of G∃1(ϕ, β,m) is finite.

Theorem 21. Verifier wins the game G∃1(ϕ, β,m) if and only if Sm(D), β |=
∃xϕ(x, y).

Proof. We prove that there is a direct correspondence between winning strategies
for Verifier and finite sets satisfying formulas.

(⇐) Let (A1, . . . ,An) = S(D) and assume that Am, β |= ∃xϕ(x, y). We can
assume that Am is an indexed structure, and we let a be the indexed element
such that Am, β[x 7→ a] |= ϕ(x, y). We prove the existence of a winning strategy
for Verifier by induction on the depth of a = (a0, w). Let dp(a) = 1, then a is
an element in a finite component of Am, and hence Verifier wins by moving to
[ϕ, β[x 7→ a0],m]. Let dp(a) > 1, i.e. a = (a0, cw

′). By Theorem 18 there exists
a Dm-decomposition (ψ1

1 , . . . , ψ
1
km

), . . . , (ψr1, . . . , ψ
r
km

) of ϕ and a number ` ∈ [r]

such that (Am[j], β̂j [x 7→ a]) |= ψ̂`j for all j ∈ [km]. Since a is to be found in

the c-th component (which cannot be a finite one), ψ`c is the only formula of

the tuple in which x occurs freely (otherwise, ψ̂`c = ⊥), and hence, by induction
hypothesis, Verifier wins by moving to [(ψ`1, . . . , ψ

`
km

), c,m].
(⇒) Assume that Verifier has a strategy to win the game from the initial

position [ϕ(x, y), β,m]. Since all plays won by Verifier are finite, unraveling the
game graph and removing branches that do not correspond to moves taken by
Verifier’s winning strategy, and Falsifier’s moves that directly lead to terminal
positions that are losing for him, we obtain a finite path (since Falsifier has
only trivial choices if he does not want to lose immediately). Concatenating
Verifier’s choices of components along this path to an index word w, we obtain,
together with the final move to position [ϕ, β[x 7→ a], i], an indexed element
(a,w). By a straightforward induction using Theorem 18, we conclude, that
Am, β[x 7→ a] |= ϕ(x, y). ut

D Proof from Section 5

Proof (of Lemma 13). For each i ∈ N, let Si be a set with more than i elements
satisfying ϕ(Si). The tree obtained from the prefix closure of {w : (s, w) ∈⋃
i Si} (w is the index of the element w.r.t. Am) is a finitely branching tree with

arbitrarily long paths (since the depth of the sets Si is unbounded) such that, for
each node v, the component Sm(D)[v] contains some element from a set Si. By
König’s Lemma, this tree has an infinite path α = jα1 ∈ ∆ ω

D , with ∆D =
⋃
`∆`,

and since each Si is finite, elements of infinitely many Si are reachable from any
node on this path. In particular, U is unbounded in Sm(D)[j]. In general, for any
Sm(D)[w], where w is a prefix of α = wjα′, U is unbounded in the component
Sm(D)[wj]. ut

22


