
Synthesis for Structure Rewriting Systems

Łukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

MFCS
High Tatras, 2009

1 / 13

Structure Rewriting History

Relational Structures and Dynamics of Certain
Discrete Systems

Václav Rajlich, 2nd MFCS, High Tatras, summer 1973

On Oriented Hypergraphs and on Dynamics of some
Discrete Systems

Václav Rajlich (abstract), vol. 1 of LNCS, autumn 1973

This structure is well suited for our purposes,
namely for its intuitive appeal, immense generality
and flexibility, and also for its potential in
description of the real world, consisting of
interrelated objects.

Since then . . .
• �eory of graph grammars, tree decompositions, connections toMSO
• Applications to so�ware engineering and veri�cation

2 / 13

Structure Rewriting History

Relational Structures and Dynamics of Certain
Discrete Systems

Václav Rajlich, 2nd MFCS, High Tatras, summer 1973

On Oriented Hypergraphs and on Dynamics of some
Discrete Systems

Václav Rajlich (abstract), vol. 1 of LNCS, autumn 1973

This structure is well suited for our purposes,
namely for its intuitive appeal, immense generality
and flexibility, and also for its potential in
description of the real world, consisting of
interrelated objects.

Since then . . .
• �eory of graph grammars, tree decompositions, connections toMSO
• Applications to so�ware engineering and veri�cation

2 / 13

Structure Rewriting History

Relational Structures and Dynamics of Certain
Discrete Systems

Václav Rajlich, 2nd MFCS, High Tatras, summer 1973

On Oriented Hypergraphs and on Dynamics of some
Discrete Systems

Václav Rajlich (abstract), vol. 1 of LNCS, autumn 1973

This structure is well suited for our purposes,
namely for its intuitive appeal, immense generality
and flexibility, and also for its potential in
description of the real world, consisting of
interrelated objects.

Since then . . .
• �eory of graph grammars, tree decompositions, connections toMSO
• Applications to so�ware engineering and veri�cation

2 / 13

Structure Rewriting History

Relational Structures and Dynamics of Certain
Discrete Systems

Václav Rajlich, 2nd MFCS, High Tatras, summer 1973

On Oriented Hypergraphs and on Dynamics of some
Discrete Systems

Václav Rajlich (abstract), vol. 1 of LNCS, autumn 1973

This structure is well suited for our purposes,
namely for its intuitive appeal, immense generality
and flexibility, and also for its potential in
description of the real world, consisting of
interrelated objects.

Since then . . .
• �eory of graph grammars, tree decompositions, connections toMSO
• Applications to so�ware engineering and veri�cation

2 / 13

Structure Rewriting Rules

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) → (B, RB

1 , RB
2 , . . . , RB

k) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i) ⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ R
B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Rewriting Example

a b
R

a b
R

Pa Pb Pb

3 / 13

Structure Rewriting Rules

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) → (B, RB

1 , RB
2 , . . . , RB

k) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i) ⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ R
B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Rewriting Example

a b
R

a b
R

Pa Pb Pb

3 / 13

Structure Rewriting Games

Game arena is a directed graph with:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning condition:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play

4 / 13

Structure Rewriting Games

Game arena is a directed graph with:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning condition:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play

4 / 13

Structure Rewriting Games

Game arena is a directed graph with:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning condition:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play

4 / 13

Structure Rewriting Games

Game arena is a directed graph with:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning condition:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play

4 / 13

Example Game: Connect–5

S

B B
S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

5 / 13

Example Game: Connect–5

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B BB

B B B B B BB B B

B BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

5 / 13

Example Game: Connect–5

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B BB

B B B B B B

B B B

B B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

5 / 13

Example Game: Connect–5

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B B

B B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

5 / 13

Example Game: Connect–5

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

5 / 13

Example Game: Connect–5

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))
5 / 13

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

6 / 13

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

6 / 13

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

6 / 13

Main Result

Logics
• Lµ[MSO]: Temporal properties expressed in Lµ (subsumes LTL) with
properties of structures (states) expressed in MSO

• limMSO: Property of the limit structure expressed in MSO

�eorem

• Let R be a �nite set of (universal) simple structure rewriting rules,
• and φ be an Lµ[MSO] or limMSO formula.

�en the set {π ∈ Rω ∶ (lim)S(π) ⊧ φ} is ω-regular.

Corollary

Establishing the winner of (universal) �nite simple rewriting games is decidable.

7 / 13

Why Universal Rewriting?

Simple Rewriting: Universal vs. Existential
• Universal is arguably less natural than the Existential
• Graph grammars (one player) are de�ned in the Existential way
• Generated structures have bounded clique-width in both cases

Establishing the winner in existential games is undecidable:
Simulate active context-free games (thanks to Anca Muscholl)

Active Context-Free Games
• Played on a word (letters↝ predicates)
• Juliet selects a position in the word
• Romeo selects a CFG rule to apply
• Winner: Juliet wins if a word in a regular language L is reached

8 / 13

Why Universal Rewriting?

Simple Rewriting: Universal vs. Existential
• Universal is arguably less natural than the Existential
• Graph grammars (one player) are de�ned in the Existential way
• Generated structures have bounded clique-width in both cases

Establishing the winner in existential games is undecidable:
Simulate active context-free games (thanks to Anca Muscholl)

Active Context-Free Games
• Played on a word (letters↝ predicates)
• Juliet selects a position in the word
• Romeo selects a CFG rule to apply
• Winner: Juliet wins if a word in a regular language L is reached

8 / 13

Proof: Intuition behind Simple Rewriting

Simple Rewriting ignoring Terminal Relations

R

R

R R

R

R R

R

R R

R

R R

MSO is compositional:

�k(A⊕connect B) =�k(A) ⊕connect �k(B)

Not compositional: e.g. ∣P∣ = ∣Q∣ (in SO,MSO2 using Hamilton cycle)

Proof formally: through MSO interpretation in the binary tree

9 / 13

Proof: Intuition behind Simple Rewriting

Simple Rewriting ignoring Terminal Relations

R

R

R R

R

R R

R

R R

R

R R

MSO is compositional:

�k(A⊕connect B) =�k(A) ⊕connect �k(B)

Not compositional: e.g. ∣P∣ = ∣Q∣ (in SO,MSO2 using Hamilton cycle)

Proof formally: through MSO interpretation in the binary tree

9 / 13

Proof: Intuition behind Simple Rewriting

Simple Rewriting ignoring Terminal Relations

R

R

R R

R

R R

R

R R

R

R R

MSO is compositional:

�k(A⊕connect B) =�k(A) ⊕connect �k(B)

Not compositional: e.g. ∣P∣ = ∣Q∣ (in SO,MSO2 using Hamilton cycle)

Proof formally: through MSO interpretation in the binary tree

9 / 13

Proof: Intuition behind Simple Rewriting

Simple Rewriting ignoring Terminal Relations

R

R

R R

R

R R

R

R R

R

R R

MSO is compositional:

�k(A⊕connect B) =�k(A) ⊕connect �k(B)

Not compositional: e.g. ∣P∣ = ∣Q∣ (in SO,MSO2 using Hamilton cycle)

Proof formally: through MSO interpretation in the binary tree

9 / 13

Proof: Intuition behind Simple Rewriting

Simple Rewriting ignoring Terminal Relations

R

R

R R

R

R R

R

R R

R

R R

MSO is compositional:

�k(A⊕connect B) =�k(A) ⊕connect �k(B)

Not compositional: e.g. ∣P∣ = ∣Q∣ (in SO,MSO2 using Hamilton cycle)

Proof formally: through MSO interpretation in the binary tree
9 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●● ● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

●

●● ●

●

●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●

● ●

●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●

● ●

●●

⊕

e(●, ●)

●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●

●

● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●

●

● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

●

●

● ● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

●

●

● ● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.

10 / 13

Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13

Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13

Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13

Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
.

f , q0 → (q1, q2)

ignore

12 / 13

Outlook

Many questions are naturally de�ned as structure rewriting games.

Checking MSO on structures of bounded clique-width
Important in practice, e.g. for so�ware veri�cation (separation logic)

• MONA: fails for 3 colours (reachability)
• QBF Solvers: work for bounded model checking
• Composition Method: not tested yet (works for reachability)

Questions
• Decidable fragments with existential rules?
• Other logics and graph measures, e.g. for FO, FO[Reach]?
• Can we solve such games in practice?

�ank You

13 / 13

Outlook

Many questions are naturally de�ned as structure rewriting games.

Checking MSO on structures of bounded clique-width
Important in practice, e.g. for so�ware veri�cation (separation logic)

• MONA: fails for 3 colours (reachability)
• QBF Solvers: work for bounded model checking
• Composition Method: not tested yet (works for reachability)

Questions
• Decidable fragments with existential rules?
• Other logics and graph measures, e.g. for FO, FO[Reach]?
• Can we solve such games in practice?

�ank You

13 / 13

Outlook

Many questions are naturally de�ned as structure rewriting games.

Checking MSO on structures of bounded clique-width
Important in practice, e.g. for so�ware veri�cation (separation logic)

• MONA: fails for 3 colours (reachability)
• QBF Solvers: work for bounded model checking
• Composition Method: not tested yet (works for reachability)

Questions
• Decidable fragments with existential rules?
• Other logics and graph measures, e.g. for FO, FO[Reach]?
• Can we solve such games in practice?

�ank You

13 / 13

Outlook

Many questions are naturally de�ned as structure rewriting games.

Checking MSO on structures of bounded clique-width
Important in practice, e.g. for so�ware veri�cation (separation logic)

• MONA: fails for 3 colours (reachability)
• QBF Solvers: work for bounded model checking
• Composition Method: not tested yet (works for reachability)

Questions
• Decidable fragments with existential rules?
• Other logics and graph measures, e.g. for FO, FO[Reach]?
• Can we solve such games in practice?

�ank You
13 / 13

