
Structure Rewriting Games

Łukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

Automata and Algorithmic Logic
Stuttgart, 2009

1 / 13



Motivation

AlgoSyn: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change

2 / 13



Motivation

AlgoSyn: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station

Structures we usually consider

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change

2 / 13



Motivation

AlgoSyn: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change

2 / 13



Motivation

AlgoSyn: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change

2 / 13



Example: Two CounterMachine

Example: decrement �rst counter

Q

⋯ ⋯

Q

⋯

⋯

3 / 13



Structure Rewriting Rules

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k ) → (B, RB

1 , RB
2 , . . . , RB

k ) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ R
B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Rewriting Example

a b
R

a b
R

Pa Pb Pb

4 / 13



Structure Rewriting Rules

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k ) → (B, RB

1 , RB
2 , . . . , RB

k ) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ R
B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Rewriting Example

a b
R

a b
R

Pa Pb Pb

4 / 13



Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

5 / 13



Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

5 / 13



Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb

5 / 13



Structure Rewriting Games

Finite game graph with edges labelled by simple rewriting rules.

• A[L→R] is A with all occurrences of L rewritten toR
• Limit of A0 → A1 → A2 → . . . : (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n Ri)

Why Universal Rewriting for Games?
• In contrast to graph grammars (single player)
• Establishing the winner if players pick embeddings is undecidable:

• simulate active context-free games (thanks to Anca Muscholl)
• Choosing embedding can be allowed in special cases

• e.g. for a bounded number of non-terminals

6 / 13



Structure Rewriting Games

Finite game graph with edges labelled by simple rewriting rules.

• A[L→R] is A with all occurrences of L rewritten toR
• Limit of A0 → A1 → A2 → . . . : (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n Ri)

Why Universal Rewriting for Games?
• In contrast to graph grammars (single player)
• Establishing the winner if players pick embeddings is undecidable:

• simulate active context-free games (thanks to Anca Muscholl)
• Choosing embedding can be allowed in special cases

• e.g. for a bounded number of non-terminals

6 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j
S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 02, 0

7 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 10, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 00, 0 1, 0 2, 0

1, 0 2, 02, 0

7 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 10, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 0

1, 0 2, 0

2, 0

7 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 0

1, 0 2, 0

2, 0

7 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 0

2, 0

7 / 13



Example: Game Played with Structures (Gomoku)

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 02, 0

7 / 13



Main Result

Logics
• Properties of structures (states) expressed inMSO

• Temporal properties expressed in the modal µ-calculus, Lµ, or in LTL
• Alternatively: property of the limit structure expressed inMSO

�eorem

• Let R be a �nite set of simple separated structure rewriting rules
• and φ be an Lµ[MSO] (orMSO) formula giving the winning condition

�en the set {π ∈ Rω ∶ (lim)S(π) ⊧ φ} is ω-regular.

Corollary

Establishing the winner of �nite separated rewriting games is decidable.

8 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

● ●● ●●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●● ●●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

● ●

● ●●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

● ●

● ●●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

● ●

●

●

●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

● ●

●

●

●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

● ●

●● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●

●

● ●● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●

●

●

●

● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●

●

●

●

● . . . ●●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●●

●

●

● . . . ●

●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●●

●

●

● . . .

●

●

9 / 13



Intuition: How to Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colours 1 . . .K
• Paint to change colour of all nodes from i to j
• Edges to connect all nodes of colour i to all of colour j

Example:

●

●

●

●●

●

●

● . . .

●

●

9 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●● ●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

●

●● ●

●

●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●

● ●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●

● ●

●●

⊕

B → G

●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●

●

●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●

●

●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

●

●

● ●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

●

●

● ●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is anMSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G

10 / 13



Proof: Separated Rewriting as a Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13



Proof: Separated Rewriting as a Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13



Proof: Separated Rewriting as a Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13



Proof: Separated Rewriting as a Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

3

⊕

4

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)

3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)

11 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore

12 / 13



Outlook

Basic Extensions
• �e way of combining sides of a rule can be generalised
• �e theorem on separated games can be generalised:

• to anything known about ω-regular games
• to some in�nite arenas e.g. pushdown graphs

Further Questions
• Unary predicates le� and right: Petri Nets, generalisations?
• Other logics and corresponding graph measures, e.g. FO, FO[Reach]?
• Apply higher-order recursion schemes, hierarchical structures?
• Can we add continuous dynamics?

• e.g. using R-structures or timed automata
• simple quantitative logics can be used

• Can we use abstraction for more complex rewriting systems?

�ank You

13 / 13



Outlook

Basic Extensions
• �e way of combining sides of a rule can be generalised
• �e theorem on separated games can be generalised:

• to anything known about ω-regular games
• to some in�nite arenas e.g. pushdown graphs

Further Questions
• Unary predicates le� and right: Petri Nets, generalisations?
• Other logics and corresponding graph measures, e.g. FO, FO[Reach]?
• Apply higher-order recursion schemes, hierarchical structures?
• Can we add continuous dynamics?

• e.g. using R-structures or timed automata
• simple quantitative logics can be used

• Can we use abstraction for more complex rewriting systems?

�ank You

13 / 13



Outlook

Basic Extensions
• �e way of combining sides of a rule can be generalised
• �e theorem on separated games can be generalised:

• to anything known about ω-regular games
• to some in�nite arenas e.g. pushdown graphs

Further Questions
• Unary predicates le� and right: Petri Nets, generalisations?
• Other logics and corresponding graph measures, e.g. FO, FO[Reach]?
• Apply higher-order recursion schemes, hierarchical structures?
• Can we add continuous dynamics?

• e.g. using R-structures or timed automata
• simple quantitative logics can be used

• Can we use abstraction for more complex rewriting systems?

�ank You
13 / 13


