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MOTIVATION

ALGOSYN: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

Tank  [><] vane O\’m’\p — Pige

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change
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ExAMPLE: TwWo COUNTER MACHINE

Example: decrement first counter
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STRUCTURE REWRITING RULES

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRP,RY,....,RP)=15

Embedding: ¢ is injective and R? (ay, ..., a,,) < RP (a(a1),...,0(ay,))
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STRUCTURE REWRITING RULES

Relational Structures and Embeddings

o: A=(ARLRY,...,RY) - (BRP,RY,....,RP)=15
Embedding: ¢ is injective and R? (ay, ..., a,,) < RP (a(a1),...,0(ay,))
Rewriting Definition

B=AL > NR/o]iff B= (A~ o(L))UR and,
for M ={(r,a)|a=0(l),re P forsomel e L} U {(a,a)|a €A},

(byy...,by,) €RP < (by,...,b,) e R} or (M x ... x b, M) n R> + @.

(in the second case at least one b; ¢ %)
Rewriting Example

i
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SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o2 o R 5

Not Separated: o—R 5 R 5
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STRUCTURE REWRITING GAMES

Finite game graph with edges labelled by simple rewriting rules.

o A[L — NR] is A with all occurrences of £ rewritten to R
o Limitof Ay - 2 - A, —...: (UneN Nisn A Unen Nisn R,‘)
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STRUCTURE REWRITING GAMES

Finite game graph with edges labelled by simple rewriting rules.

o A[L — NR] is A with all occurrences of £ rewritten to R
o Limitof Ay - 2 - A, —...: (UneN Nisn Air Unen Nisn R,‘)

Why Universal Rewriting for Games?
+ In contrast to graph grammars (single player)
+ Establishing the winner if players pick embeddings is undecidable:
« simulate active context-free games (thanks to Anca Muscholl)
+ Choosing embedding can be allowed in special cases
« e.g. for a bounded number of non-terminals
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ExXAMPLE: GAME PLAYED WITH STRUCTURES (GOMOKU)

s
i,i—@ ij—@
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MAIN RESULT

Logics
« Properties of structures (states) expressed in MSO
« Temporal properties expressed in the modal y-calculus, L, or in LTL

+ Alternatively: property of the limit structure expressed in MSO

Theorem

+ Let R be a finite set of simple separated structure rewriting rules

o and ¢ be an L,[MSQO] (or MSO) formula giving the winning condition
Then the set {m € RY : (lim)S(7) &= ¢} is w-regular.

Corollary

Establishing the winner of finite separated rewriting games is decidable.

8/13



INTUITION: HOW TO BUILD A GRAPH

Pieces to build a graph:
+ Bags of single nodes with different colours 1... K
+ Paint to change colour of all nodes from i to j

+ Edges to connect all nodes of colour i to all of colour j

Example:
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PROOF: INTERPRETING A GRAPH IN A TREE

Description of how to build G is a tree 7 (G):
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PROOF: INTERPRETING A GRAPH IN A TREE

Description of how to build G is a tree 7 (G):

e — 0 — e / N

Theorem:
For every K there is an MSO-to-MSO interpretation Z such that
for all graphs G of clique-width < K holds

I(T(9) =6
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PROOF: SEPARATED REWRITING AS A TREE

)

!
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@ e(2,0)

e(3‘,1)
e(2.3)

R @/69

/NN

30 4 R(0,1)
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@ e(2,0)

2 1 o e(.)
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R e(3,1)
O O e(2,3)
3 1 4 e

o
/ N\ AN

2 3 R(0,1)

11/13



PROOF: SEPARATED REWRITING AS A TREE

@ e(2,0)

2 1 o e(.)
e(2,3)
o ®
O———0O / N\ \
30 3 4 31
2<0
2 o 4 0,14
e(2,0)
R e(3,1)
O O e(2,3)
3 1 4 o

®

/ N\ AN

MSO-to-MSO interpretation: ¢ — y 2 3 R(0,1)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

!
S —>f(X, Y)

X > g(X,Y)

Y- ¢(X,Y)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

@®
Y - g(X, Y)

existential: pick transition

universal: left or right

f>90

%

f>q0 ~ (q1,92)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

Q /540

S—f(X,Y)
O /

X - g(X,Y) @
O

Y > g(X,Y) K :

existential: pick transition

f>q0 ~ (q1,92)

universal: left or right ignore
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OUTLOOK

Basic Extensions
+ The way of combining sides of a rule can be generalised
+ The theorem on separated games can be generalised:

« to anything known about w-regular games
« to some infinite arenas e.g. pushdown graphs
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Further Questions

+ Unary predicates left and right: Petri Nets, generalisations?
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+ Apply higher-order recursion schemes, hierarchical structures?
+ Can we add continuous dynamics?

« e.g. using R-structures or timed automata

« simple quantitative logics can be used

+ Can we use abstraction for more complex rewriting systems?
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Basic Extensions

+ The way of combining sides of a rule can be generalised
+ The theorem on separated games can be generalised:

« to anything known about w-regular games
« to some infinite arenas e.g. pushdown graphs

Further Questions

+ Unary predicates left and right: Petri Nets, generalisations?
« Other logics and corresponding graph measures, e.g. FO, FO[Reach]?

+ Apply higher-order recursion schemes, hierarchical structures?
+ Can we add continuous dynamics?

« e.g. using R-structures or timed automata

« simple quantitative logics can be used

+ Can we use abstraction for more complex rewriting systems?

Thank You
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