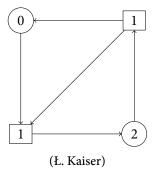
ANALYZING STRUCTURE REWRITING SYSTEMS

Łukasz Kaiser

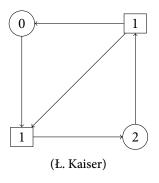
Mathematische Grundlagen der Informatik RWTH Aachen

> ALGOSYN Aachen, 2009

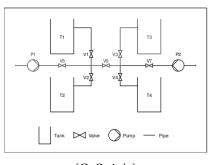
Look, I can do synthesis for that:



Look, I can do synthesis for that:

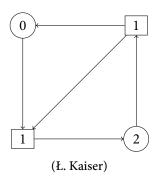


Great, I have something very similar:

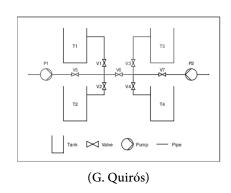


(G. Quirós)

Look, I can do synthesis for that:

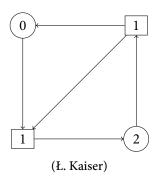


Great, I have something very similar:

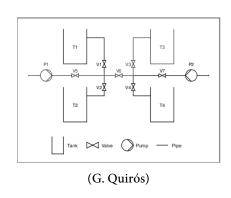


But the whole right side is just **one state** on the left!

Look, I can do synthesis for that:



Great, I have something very similar:



But the whole right side is just **one state** on the left!

Can we model states by arbitrary relational structures?

STRUCTURE REWRITING RULES

Relational Structures and Embeddings

$$\sigma: \quad \mathfrak{A} = (A, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}}) \quad \rightarrow \quad (B, R_1^{\mathfrak{B}}, R_2^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}}) = \mathfrak{B}$$

Embedding: σ is injective and $R_i^{\mathfrak{A}}(a_1,\ldots,a_{r_i}) \Leftrightarrow R_i^{\mathfrak{B}}(\sigma(a_1),\ldots,\sigma(a_{r_i}))$

STRUCTURE REWRITING RULES

Relational Structures and Embeddings

$$\sigma: \quad \mathfrak{A} = (A, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}}) \quad \rightarrow \quad (B, R_1^{\mathfrak{B}}, R_2^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}}) = \mathfrak{B}$$

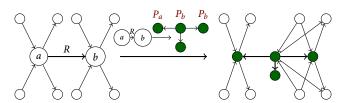
Embedding: σ is injective and $R_i^{\mathfrak{A}}(a_1,\ldots,a_{r_i}) \Leftrightarrow R_i^{\mathfrak{B}}(\sigma(a_1),\ldots,\sigma(a_{r_i}))$

Rewriting Definition

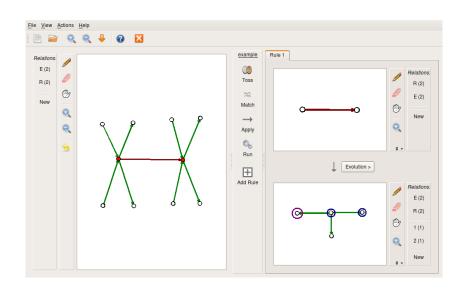
$$\mathfrak{B} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma] \text{ iff } B = (A \setminus \sigma(L)) \dot{\cup} R \text{ and,}$$
for $M = \{(r, a) \mid a = \sigma(l), r \in P_l^{\mathfrak{R}} \text{ for some } l \in L\} \cup \{(a, a) \mid a \in A\},$

$$(b_1, \dots, b_{r_i}) \in R_i^{\mathfrak{B}} \iff (b_1, \dots, b_{r_i}) \in R_i^{\mathfrak{R}} \text{ or } (b_1 M \times \dots \times b_{r_i} M) \cap R_i^{\mathfrak{A}} \neq \emptyset.$$
(in the second case at least one $b_i \notin \mathfrak{A}$)

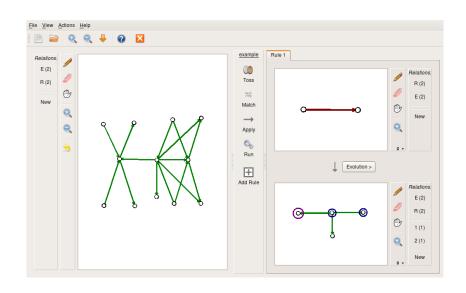
Rewriting Example



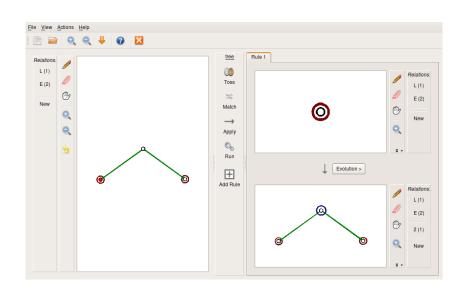
STRUCTURE REWRITING: EXAMPLE



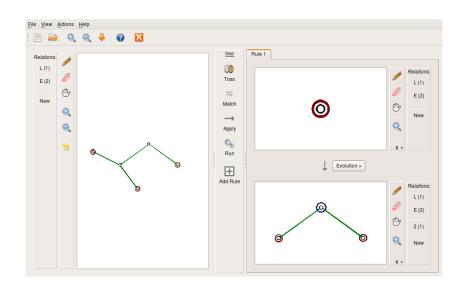
STRUCTURE REWRITING: EXAMPLE



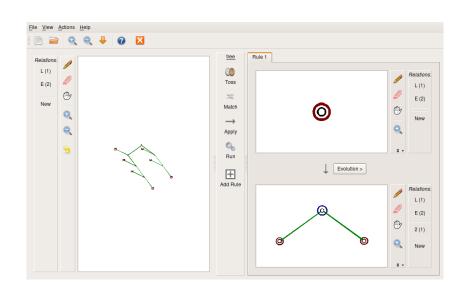
STRUCTURE REWRITING: BINARY TREE



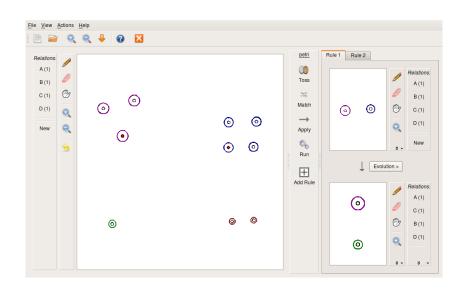
STRUCTURE REWRITING: BINARY TREE



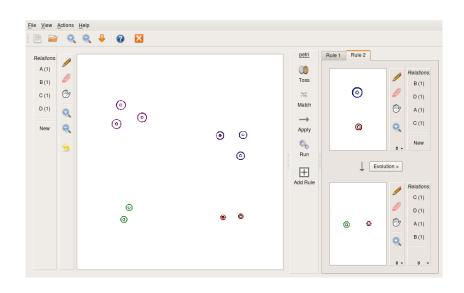
STRUCTURE REWRITING: BINARY TREE



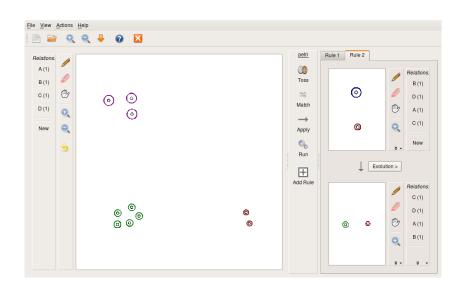
STRUCTURE REWRITING: PETRI NET



STRUCTURE REWRITING: PETRI NET



STRUCTURE REWRITING: PETRI NET



SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

Separated: $\stackrel{R}{\bigcirc} \stackrel{a}{\longrightarrow} \stackrel{R}{\bigcirc} \stackrel{R}{\longrightarrow} \stackrel{R}{\bigcirc} \stackrel$

Simple Rule $\mathfrak{L} \to \mathfrak{R}$: \mathfrak{R} is separated and \mathfrak{L} is a single tuple in relation

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

Separated: \bigcirc $\stackrel{R}{\bigcirc}$ $\stackrel{a}{\bigcirc}$ $\stackrel{R}{\bigcirc}$ $\stackrel{R}{\bigcirc}$

Simple Rule $\mathfrak{L} \to \mathfrak{R}$: \mathfrak{R} is separated and \mathfrak{L} is a single tuple in relation

Universal Rewriting and Limit Structures

- $\mathfrak{A}[\mathfrak{L} \to \mathfrak{R}]$ is \mathfrak{A} with all occurrences of \mathfrak{L} rewritten to \mathfrak{R}
- Limit of $\mathfrak{A}_0 \to \mathfrak{A}_1 \to \mathfrak{A}_2 \to \dots : (\bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} A_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} R_i)$

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

Simple Rule $\mathcal{L} \to \mathfrak{R}$: \mathfrak{R} is separated and \mathcal{L} is a single tuple in relation

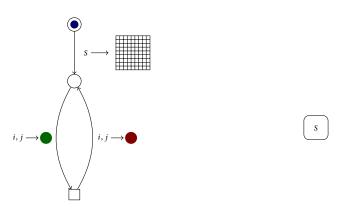
Universal Rewriting and Limit Structures

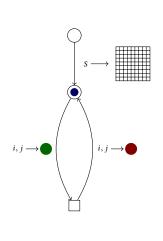
- $\mathfrak{A}[\mathfrak{L} \to \mathfrak{R}]$ is \mathfrak{A} with all occurrences of \mathfrak{L} rewritten to \mathfrak{R}
- Limit of $\mathfrak{A}_0 \to \mathfrak{A}_1 \to \mathfrak{A}_2 \to \dots : (\bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} A_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} R_i)$

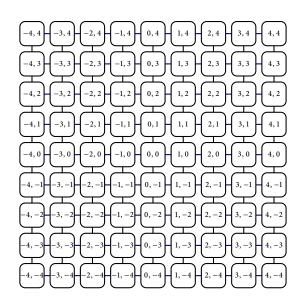
Why Universal Rewriting for Games?

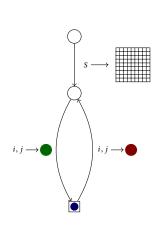
- In contrast to graph grammars (single player)
- Establishing the winner if players pick embeddings is undecidable:
 - simulate active context-free games (thanks to Anca Muscholl)
- Choosing embedding can be allowed for bounded number of non-terminals

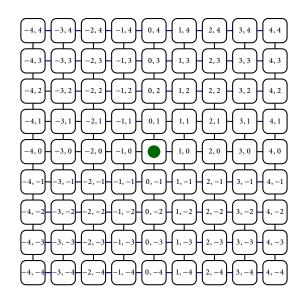
EXAMPLE GAME PLAYED WITH STRUCTURES (GOMOKU)

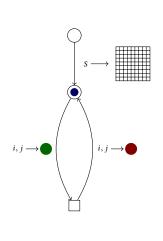


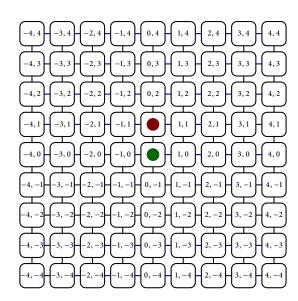


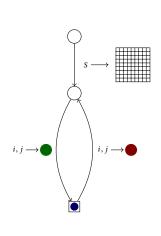


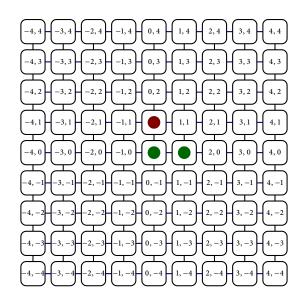


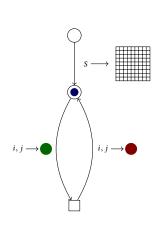


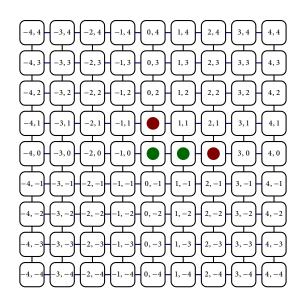












MAIN RESULT

Logics

- Properties of structures (states) expressed in MSO
- Temporal properties expressed in the modal μ -calculus, L_{μ}
- Alternatively: property of the limit structure expressed in MSO

Theorem

- Let R be a finite set of simple separated structure rewriting rules
- and φ be an $L_{\mu}[MSO]$ (or MSO) formula giving the winning condition

Then the set $\{\pi \in R^{\omega} : (\lim) S(\pi) \models \varphi\}$ is ω -regular.

Corollary

Establishing the winner of finite separated rewriting games is decidable.

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Example:

•

Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from i to j
- Edges to connect all nodes of colour i to all of colour j

Example:

•

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Example:

, ,

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour *i* to all of colour *j*

PROOF: HOW TO BUILD A GRAPH

Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Example:

PROOF: HOW TO BUILD A GRAPH

Pieces to build a graph:

- Bags of single nodes with different colours 1... *K*
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour i to all of colour j

Example:

PROOF: HOW TO BUILD A GRAPH

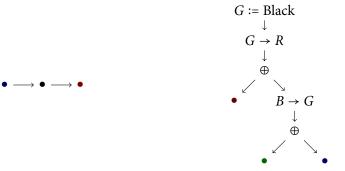
Pieces to build a graph:

- Bags of single nodes with different colours 1... K
- Paint to change colour of all nodes from *i* to *j*
- Edges to connect all nodes of colour *i* to all of colour *j*

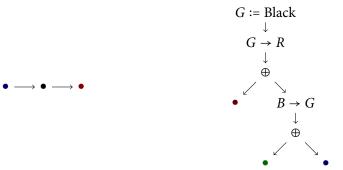
Example:

Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:

• •



Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:

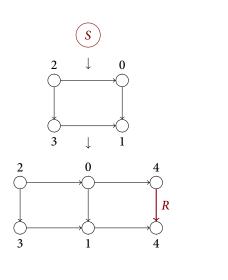


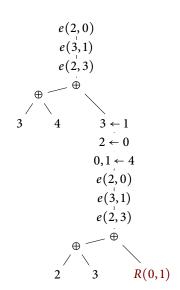
Theorem:

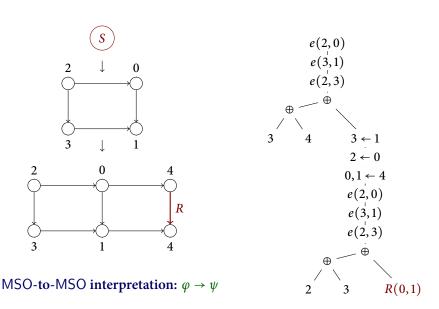
For every K there is an MSO-to-MSO interpretation \mathcal{I} such that for all graphs \mathcal{G} of clique-width $\leq K$ holds

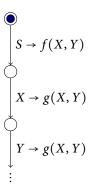
$$\mathcal{I}(\mathcal{T}(\mathcal{G}))\cong\mathcal{G}$$

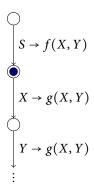
.

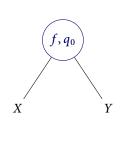


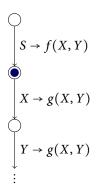


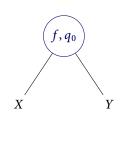




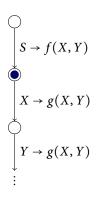


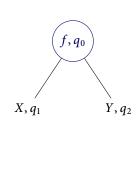






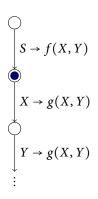
existential: pick transition

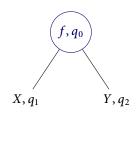




existential: pick transition

$$f, q_0 \to (q_1, q_2)$$

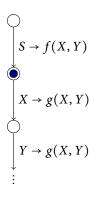


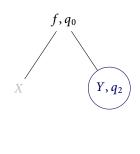


existential: pick transition

 $f,q_0\to (q_1,q_2)$

universal: left or right

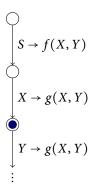




existential: pick transition

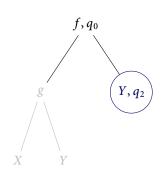
universal: left or right

$$f, q_0 \to (q_1, q_2)$$



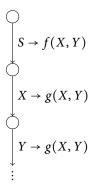
existential: pick transition

universal: left or right



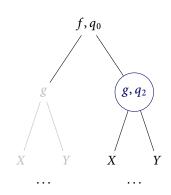
$$f, q_0 \to (q_1, q_2)$$

ignore



existential: pick transition

universal: left or right



$$f,q_0\to (q_1,q_2)$$

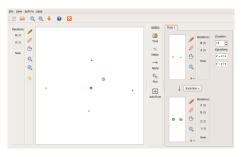
ignore

Structure Rewriting Extensions

• The way of combining sides of a rule can be generalised

Structure Rewriting Extensions

- The way of combining sides of a rule can be generalised
- Continuous dynamics can be added
 - defined e.g. using \mathbb{R} -structures and differential equations
 - simple quantitative logics can be used



Structure Rewriting Extensions

- The way of combining sides of a rule can be generalised
- Continuous dynamics can be added
 - defined e.g. using $\mathbb{R}\text{-structures}$ and differential equations
 - simple quantitative logics can be used

Analyzing Structure Rewriting Systems

- Result: synthesis possible for separated rewriting games
- The theorem on separated games can be generalised:
 - to anything known about ω -regular games
 - to some infinite arenas e.g. pushdown graphs
- Unary predicates left and right: Petri Nets, generalisations?
- Other logics and corresponding graph measures, e.g. FO, FO[Reach]?
- General method: reduction to trees. Do term rewriting methods apply?
- Can we use abstraction for more complex rewriting systems?

Structure Rewriting Extensions

- The way of combining sides of a rule can be generalised
- Continuous dynamics can be added
 - defined e.g. using \mathbb{R} -structures and differential equations
 - simple quantitative logics can be used

Analyzing Structure Rewriting Systems

- Result: synthesis possible for separated rewriting games
- The theorem on separated games can be generalised:
 - to anything known about ω -regular games
 - · to some infinite arenas e.g. pushdown graphs
- Unary predicates left and right: Petri Nets, generalisations?
- Other logics and corresponding graph measures, e.g. FO, FO[Reach]?
- General method: reduction to trees. Do term rewriting methods apply?
- Can we use abstraction for more complex rewriting systems?

Thank You