Playing General Structure Rewriting Games

Fukasz Kaiser
Mathematische Grundlagen der Informatik
RWTH Aachen

Abstract

Achieving goals in a complex environment in which many
players interact is a general task demanded from an Al agent.
When goals of the players are given explicitly, such setting
can be described as a multi-player game with complete in-
formation. We introduce a general model of such games
in which states are represented by relational structures (hy-
pergraphs), possibly with real-valued labels, and actions by
structure rewriting rules. For this model, we develop an algo-
rithm which computes rational strategies for the players. Our
algorithm can be parametrized by a probabilistic evaluation
function and we devise a general procedure for learning such
evaluations. First tests on a few classical examples substanti-
ate the chosen game model and our algorithm.

Introduction

As frustrated users know, a computer sometimes simply
does not want to work. At other times, a car does not want
to start. These phrases show how natural it is to ascribe de-
sires and goals to active objects in an effort to understand
them. Not only is it natural: it is arguably very useful as
well. We encounter many complex objects in the environ-
ment, including ourselves and other people, and it is impos-
sible to understand their function in detail. Knowing their
goals and intentions, even vaguely, already allows to predict
their actions to a useful degree.

In this paper, we present a modeling system in which ex-
plicitly given goals of multiple players define the dynamics.
To run such a system, an algorithm making rational deci-
sions for the players is necessary. Our main contribution is
exactly such an algorithm, which gives reasonable results
by default and can take probabilistic evaluation functions as
an additional parameter. We also devise a general learning
mechanism to construct evaluation functions. This mecha-
nism is non-deterministic: the choice of the next hypothesis
is delegated to an external function. Still, even instantiated
with a very simple policy it manages to learn useful evalu-
ations, at least in a few basic examples. Some components
used in the presented algorithms may be of independent in-
terest. One of them is a solver for an expressive logic, an-
other one is a generalization of the Monte-Carlo playing al-
gorithm with Upper Confidence bounds for Trees (UCT).

The UCT algorithm has already been used in a general
game playing (GGP) competition. Cadia player [2], a pro-

Fukasz Stafiniak

Institute of Computer Science
University of Wroctaw

gram using UCT, won the competition in 2007 demonstrat-
ing good performance of the UCT algorithm. Sadly, both the
way of representing games in the GGP framework and the
examples used in the competition lack true generality: These
are either board games (e.g. connect-4, chess, go) or maze
games (e.g. pac-man) described in a very basic prolog-like
language [4]. There is neither a way to represent continuous
real-time dynamics in the GGP framework, nor a way to de-
fine probabilistic choice. Moreover, in almost all examples it
is possible to distinguish a fixed board and pieces moved by
the players. Thus, for programs entering the GGP competi-
tion certain narrow board-game heuristics are crucial, which
reduces their applications to general Al. We give both a gen-
eral game model, representing states in a way similar to gen-
eralized hypergraphs [5], and a general algorithm which is
capable to learn useful patterns in specific situations without
any fixed prior heuristic.

Organization. In the first two sections, we show how to
represent the state of the world in which the agents play and
their actions. The first section discusses discrete dynamics
and the second one specifies how continuous values evolve.
In the third section we introduce the logic used to describe
patterns in the states. We finalize the definition of our model
of games in the fourth section. Next, we proceed to the al-
gorithmic part: we first describe the generalized UCT algo-
rithm for playing games and then the learning procedure for
evaluation functions. Finally, we present a few experimental
results and conclude with perspectives on the applications of
our modeling system and algorithms.

Discrete Structure Rewriting

To represent a state of our model in a fixed moment of time
we use finite relational structures, i.e. labelled directed hy-
pergraphs. A relational structure % = (A, Ry,...,Ry)
is composed of a universe A and a number of relations
Ry, ..., Ri. We denote the arity of R; by r;, so R; C A",
The signature of 2 is the set of symbols {R1, ..., Ry}

The dynamics of the model, i.e. the way the structure can
change, is described by structure rewriting rules, a gener-
alized form of term and graph rewriting. Extended graph
rewriting is recently viewed as the programming model of
choice for complex multi-agent systems, especially ones
with real-valued components [1]. Moreover, this form of
rewriting is well suited for visual programming and helps to

Rewriting Rule:
O

o0 - ©QO

Figure 1: Rewriting rule and its application to a structure.

make the systems understandable.

In the most basic setting, a rule £ —4 R consists of two
finite relational structures £ and R over the same signature
and a partial function s : R — £ specifying which elements
of £ will be substituted by which elements of ‘.

Let 2,8 be two structures, 7, a set of relations sym-
bols to be matched exactly and 7, a set of relations to be
matched only positively.! A function f : 2 — B is a
(Te, Th)-embedding if f is injective, for each R; € 7, it holds
that (ay,...,a.) € R} & (f(a1),...,f(a,,)) € RE,
and for R; € m, it holds that (a1,...,a,,) € RJQ-[=
(f(ar),..., f(ar,)) € RP. A (7o, m)-match of the rule
£ —¢ R in another structure 2 is an (7., 7,)-embedding
o : £ — 2. We define the result of an application of
£ —5 M to A on the match o as B = AL —; R/0],
such that the universe of B is given by (A \ o(L))UR, and
the relations as follows. A tuple (by,...,b,,) is in the new
relation R if and only if either it is in the relation in R
already, (by,...,b.) € R, or there exists a tuple in the
previous structure, (aq,...,a,,) € R?‘, such that for each ¢
either a; = b; or a; = o(s(b;)), i.e. either the element was
there before or it was matched and b; is the replacement as
specified by the rule. Moreover, if R; € 7. then we require
in the second case that at least one b; was already in the orig-
inal structure, i.e. b; = a;. To understand this definition it is
best to consider an example, and one is given in Figure 1.

Continuous Evolution

To model continuous dynamics in our system, we supple-
ment relational structures with a number of labeling func-
tions f1,..., fi, each f; : A — R (A is the universe).? Ac-
cordingly, each rewriting rule is extended by a system of
ordinary differential equations (ODEs) and a set of right-
hand update equations. We use a standard form of ODEs:

o=t fo 1), where f; are the above-mentioned
functions, [can be any element of the left-hand side struc-
ture and f* denotes the k-th derivative of f. The term ¢(%)
is constructed using standard arithmetic functions +, —, -, /,
natural roots {/ for n > 1 and rational numbers r € Q in
addition to the variables and a set of parameters p fixed

'In practice, we also allow some tuples in £ to be optional; this
is a shorthand for multiple rules with the same right-hand side.
’In fact f;(a) is notin R; it is a function e — (z,246),8 < €.

for each rule. The set of right-hand side update equations
contains one equation of the form f;, = t(f;;) for each
function f; and each r from the right-hand side structure.

Let R = {(&; —s, Ri,D;,Ti) | i < n} be a set of
rules extended with ODEs D; and update equations 7; as
described above. Given, for each rule in R, a match o; of the
rule in a structure 2, the required parameters p; and a time
bound ¢;, we define the result of a simultaneous application
of R to A, denoted A[R /{0, t;}], as follows.

First, the structure 2(evolves in a continuous way as given
by the sum of all equations D;. More precisely, let D be a
system of differential equations where for each a € 2 there
exists an equation defining fi’fa if and only if there exists an

equation in some D, for fi’fl for some ! with 0;(I) = a. In

such case, the term for fl-’fa is the sum of all terms for such /,
with each f"} replaced by the appropriate fﬂj(l). Assum-
ing that all functions f; and all their derivatives are given at
the beginning, there is a unique solution for these variables
which satisfies D and has all other, undefined derivatives set
by the starting condition from 2(. This solution defines the
value of f; o(t) for each a € 2 at any time moment ¢.
Lett = min; ., t; be the lowest chosen time bound and
let dg, . . ., s be all rules with this bound, i.e. each t; = t°.
We apply each of these rules independently! to the structure
2l at time t°. Formally, the relational part of A[R /{0, t;}]
is equal to Q[[Sio —>5i0 E)%io/aig] s [Szk %Sik E)f{ik/aik]
and the function values f;(a) are defined as follows. If the
element a was not changed, a € 2, then we keep the func-
tion value from the solution of D, i.e. fi(a) = f; 4(t°). In
the other case a was on the right-hand side of some rule,
a € Ry, Let f; , = t(f;,) be the equation in 7y, defining
fi.a- The new value of f;(a) is then computed by inserting
the appropriate values for f;; from the solution of D into
t(fi0).ie. fi(a) = t(y;;1) where each y;; = f; .. 1) (t%).
Example. Let us define a simple two-dimensional model
of a cat chasing a mouse. The structure we use, % =
({c,m},C, M, z,y), has two elements ¢ and m, unary re-
lations C' = {c} and M = {m} used to identify which ele-
ment is which and two real-valued functions x and y. Both
rewriting rules have only one element, both on the left-hand
side and on the right-hand side, and the element is in C' for
the cat rule and in M for the mouse rule. The ODEs for
both rules are of the form =’ = p,,y’ = p,, where p,, p,
are parameters. The update equations just keep the left-hand
side values, x, = x;,y, = y;. In this setting, simultaneous
application of the cat rule with parameters pg, py, for time ¢°
and the mouse rule with parameters p;", py" for time ¢ will
have the following effect: The cat will move with speed p¢,
along the z-axis and p;, along the y-axis and the mouse anal-

ogously with p* and p;*, both for time t0 = min(t¢, t™).

Logic and Constraints

The logic we use for specifying properties of states is an
extension of monadic second-order logic with real-valued
terms and counting operators. The main motivation for the

3 Assume no two intersecting rules have identical time bounds.

choice of such logic is compositionality: To evaluate a for-
mula on a large structure 2 which is composed in a regular
way from substructures 8 and € it is enough to evaluate cer-
tain formulas on B and € independently. Monadic second-
order logic is one of the most expressive logics with this
property and allows to define various useful patterns such as
stars, connected components or acyclic subgraphs.*

In the syntax of our logic, we use first-order variables
(x1, 2, ...) ranging over elements of the structure, second-
order variables (X1, Xo, .. .) ranging over sets of elements,
and real-valued variables (o, aa, . ..) ranging over R, and
we distinguish boolean formulas ¢ and real-valued terms p:

@:i= Ri(zy,...,xp) 2w = xj|wi € Xj[p<cpleng]
oV |op| 3z Vrip| IX0 | VX | Jase | Yaip,

pi=o;| filz;) | p+plxle]| ming, o | Xog, 0| Iz, p-

Semantics of most of the above operators is defined in the
well known way, e.g. p+ p is the sum and p - p the product of
real-valued terms, and 3X p(X') means that there exists a set
of elements .S such that ¢(,S) holds. Among less known op-
erators, the term X[¢] denotes the characteristic function of
, 1.e. the real-valued term which is 1 for all assignments for
which ¢ holds and 0 for all other. To evaluate min,, ¢ we
take the minimal «; for which ¢ holds (we allow o0 as val-
ues of terms as well). The terms } ., p and [], p denote

the sum and product of the values of p(Z) for all assignments
of elements of the structure to Z for which ¢(Z) holds. Note
that both these terms can have free variables, e.g. the set of
free variables of Zﬂ o, P 18 the union of free variables of ¢

and free variables of p, minus the set {Z}. Observe also the
€ in <.: the values f(a) are given with arbitrary small but
non-zero error (cf. footnote 2) and p; <. p2 holds only if
the upper bound of p; lies below the lower bound of ps.
The logic defined above is used in structure rewriting rules
in two ways. First, it is possible to define a new relation
R(T) using a formula ¢(Z) with free variables contained
in . Defined relations can be used on left-hand sides of
structure rewriting rules, but are not allowed on right-hand
sides. The second way is to add constraints to a rule. A
rule £ —4 R can be constrained using three sentences (i.e.
formulas without free variables): ¢pre, Yiny and @pest. In
both e and pin, we allow additional constants [for each
I € £ and in ¢, special constants for each r € 93 can be
used. A rule £ —, 9} with such constraints can be applied
on a match ¢ in 2 only if the following holds: At the begin-
ning, the formula ¢, must hold in 2 with the constants [
interpreted as o (l). Later, during the whole continuous evo-
lution, the formula ¢y, must hold in the structure 2 with
continuous values changed as prescribed by the solution of
the system D (defined above). Finally, the formula ¢t
must hold in the resulting structure after rewriting. During
simultaneous execution of a few rules with constraints and
with given time bounds ¢;, one of the invariants ¢;,, may
cease to hold. In such case, the rule is applied at that mo-
ment of time, even before t° = min¢; is reached — but of
course only if ¢, holds afterwards. If ¢, does not hold,
the rule is ignored and time goes on for the remaining rules.

*We provide additional syntax (shorthands) for useful patterns.

Game Graph: EMHE

O-(®

Starting Structure:
c, dc. lc

c

O=0=0

Figure 2: Tic-tac-toe as a structure rewriting game.

Structure Rewriting Games

As you could judge from the cat and mouse example, one
can describe a structure rewriting game simply by providing
a set of allowed rules for each player. Still, in many cases it
is necessary to have more control over the flow of the game
and to model probabilistic events. For this reason, we use
labelled directed graphs with probabilities in the definition
of the games. The labels for each player are of the form:

>\ = (2 _>s ma D7 Tv @prea SDinvv (Pposta ItaEa m, Te)~

Except for a rewriting rule with invariants, the label A spec-
ifies a time interval I; C [0, 00) from which the player can
choose the time bound for the rule and, if there are other con-
tinuous parameters pi, . . ., pp, also an interval I, C R for
each parameter. The element m € {1, x, 00} specifies if the
player must choose a single match of the rule (m = 1), apply
it simultaneously to all possible matches (m = oo, useful
for modeling nature) or if any number of non-intersecting
matches might be chosen (m = x*); 7, tells which relations
must be matched exactly (all other are in 7).

We define a general structure rewriting game with k play-
ers as a directed graph in which each vertex is labelled by &
sets of labels denoting possible actions of the players. For
each k-tuple of labels, one from each set, there must be an
outgoing edge labelled by this tuple, pointing to the next lo-
cation of the game if these actions are chosen by the players.
There can be more than one outgoing edge with the same la-
bel in a vertex: In such case, all edges with this label must be
assigned probabilities (i.e. positive real numbers which sum
up to 1). Moreover, an end-point of an interval I; or I, in a
label can be given by a parameter, e.g. x. Then, each out-
going edge with this label must be marked by = ~ N (u, o),
x~U(a,b) or z~E(N), meaning that = will be drawn from
the normal, uniform or exponential distribution (these 3 cho-
sen for convenience). Additionally, in each vertex there are k
real-valued terms of the logic presented above which denote
the payoff for each player if the game ends at this vertex.

A play of a structure rewriting game starts in a fixed first
vertex of the game graph and in a state represented by a
given starting structure. All players choose rules, matches
and time bounds allowed by the labels of the current vertex
such that the tuple of rules can be applied simultaneously.
The play proceeds to the next vertex (given by the labeling
of the edges) in the changed state (after the application of
the rules). If in some vertex and state it is not possible to
apply any tuple of rules, either because no match is found
or because of the constraints, then the play ends and payoff
terms are evaluated giving the outcome for each player.

Example. Let us define tic-tac-toe in our framework. The
state of the game is represented by a structure with 9 el-

ements connected by binary row and column relations, R
and C, as depicted on the right in Figure 2. To mark the
moves of the players we use unary relations P and (). The
allowed move of the first player is to mark any unmarked el-
ement with P and the second player can mark with). Thus,
there are two states in the game graph (representing which
player’s turn it is) and two corresponding rules, both with
one element on each side (left in Figure 2). The two diag-
onal relations can be defined by D1 (z,y) = Jz(R(z, z) A
C(z,y)) and Do(z,y) = Fz(R(z,2) A C(y, 2)) and a line
of three by L(z,y,2) = (R(z,y) A R(y,2)) V (C(z,y) A
C(y, 2)V(D1 (2, y)AD1 (y, 2))V (Do, y) ADa(y, 2)). Us-
ing this definitions, the winning condition for the first player
is given by ¢ = JxIyI2(P(x) A P(y) A P(2) A L(x,y, 2))
and for the other player analogously with (). To ensure that
the game ends when one of the players has won, we take
as a precondition of each move the negation of the winning
condition of the other player.

Playing the Games

When playing a game, players need to decide what their
next move is. To represent the preferences of each player,
or rather her expectations about the outcome after each step,
we use evaluation games. Intuitively, an evaluation game is
a statistical model used by the player to assess the state after
each move and to choose the next action. Formally, an eval-
uation game & for G is just any structure rewriting game®
with the same number of players and with extended signa-
ture. For each relation R and function f used in G we have
two symbols in £: R and R4, respectively f and fo1q4-

To explain how evaluation games are used, imagine that
players made a concurrent move in G from 2l to ®5 in which
each player applied his rule £; —5, fR; to certain matches.
We construct a structure € representing what happened in
the move as follows. The universe of € is the universe of B
and all relations R and functions f are as in *B. Further, for
each b € ‘B let us define the corresponding element a € 2 as
either b, if b € A, or as s;(b), if b was in some right-hand side
structure *R; and replaced a. The relation R4 contains the
tuples b which replaced some tuple @ € R*. The function
fora(b) is equal to fojq(a) (evaluated in 21) if b replaced a
and it is O if b did not replace any element. We use € as
the starting structure for the evaluation game £. This game
is then played (as described below) and the outcome of £ is
used as an assessment of the move ¢ for each player.

As you can see above, the evaluation game & is used to
predict the outcomes of the game G. This can be done in
many ways: In one basic case, no player moves in the game
& — there are only probabilistic nodes and thus & represents
just a probabilistic belief about the outcomes. In another ba-
sic case, £ returns a single value — this should be used if
the player is sure how to assess a state, e.g. if the game ends
there. In the next section we will construct evaluation games
in which players make only trivial moves depending on cer-
tain formulas — in such case £ represents a more complex
probability distribution over possible payoffs. In general, £
can be an intricate game representing the judgment process

>In fact it is not a single game & but one for each vertex of G.

of the player. In particular, note that we can use G itself
for £, but then without evaluation games any more to avoid
circularity. This corresponds to a player simulating the game
itself as a method to evaluate a state.

‘We know how to use an evaluation game £ to get a payoff
vector (one for each player) denoting the expected outcome
of a move. These predicted outcomes are used to choose the
action of player ¢ as follows. We consider all discrete actions
of each player and construct a matrix defining a normal-
form game in this way. Since we approximate ODEs by
polynomials symbolically, we keep the continuous parame-
ters playing £ and get the payoff as a piecewise polynomial
function of the parameters. This allows to solve the normal-
form game and choose the parameters optimally. To make a
decision in this game we use the concept of iterated regret
minimization (over pure strategies), well explained in [7].

The regret of an action of one player when the actions of
the other players are fixed is the difference between the pay-
off of this action and the optimal one. A strategy minimizes
regret if it minimizes the maximum regret over all tuples of
actions of the other players. We iteratively remove all ac-
tions which do not minimize regret, for all players, and fi-
nally pick one of the remaining actions at random. Note that
for turn-based games this corresponds simply to choosing
the action which promises the best payoff. In case no evalu-
ation game is given, we simply pick an action randomly and
the parameters uniformly, which is the same as described
above if the evaluation game £ always gives outcome 0.

With the method to select actions described above we can
already play the game G in the following basic way: Let
all players choose an action as described and play it. While
we will use this basic strategy extensively, note that, in case
of poor evaluation games, playing G like this would nor-
mally result in low payoffs. One way to improve them is the
Monte-Carlo method: Play the game in the basic way K
times and, from the first actions in these K plays, choose the
one that gave the biggest average payoff. Already this sim-
ple method improves the play considerably in many cases.
To get an even better improvement we simulateously con-
struct the UCT tree, which keeps track of certain moves and
associated confidence bounds during these K plays.

A node in the UCT tree consists of a position in the game
G and a list of payoffs of the plays that went through this
position. We denote by n(v) the number of plays that went
through v, by 7i(v) the vector of average payoffs (for each of
the players) and by & (v) the vector of square roots of vari-

ances, i.e. o; = /> (p})/n — 7 if p; are the recorded

payoffs for player ¢. First, the UCT tree has just one node,
the current position, with an empty set of payoffs. For each
of the next K iterations the construction of the tree pro-
ceeds as follows. We start a new play from the root of the
tree. If we are in an internal node v in the tree, i.e. in one
which already has children, then we play a regret minimiz-
ing strategy (as discussed above) in a normal-form game
with payoff matrix given by the vectors p/(w) defined as

follows. Let o (w) = o;(w)? + A -/ 22w)

W be the up-
per confidence bound on variance and to scale it let s;(w) =

Evaluation Game: UCT Tree:

0)@)

Figure 3: Evaluation game for tic-tac-toe and a UCT tree.

min(1/4, o, (w)/A), where A denotes the payoff range, i.e.
the difference between maximum and minimum possible

payoff. We set ui(w) = p(w) +C - A - %sb(w)
The parameter C balances exploration and exploitation and
the thesis [3] gives excellent motivation for precisely this
formula (UCB1-TUNED). Note that, for turn-based games,
when player 7 moves we select the child w which maximizes
i (w). When we arrive in a leaf of the UCT tree, we first add
all possible moves as its children u and play the evaluation
game a few (F) times in each of them. The initial value of
1 and o is computed from these evaluation plays and we set
n(u) = E' (1 < E' < E). After the children are added, we
select one and continue to play with the very basic strategy:
Only the evaluation game is used to choose actions and the
UCT tree is not extended any more in this iteration. When
this play of G is finished, we add the received payoff to the
list of recorded payoffs of each node on the played path and
recalculate iz and . Observe that in each of the K iterations
exactly one leaf of the UCT tree is extended and all possible
moves from there are added. After the K-th iteration is fin-
ished, the action in the root of the UCT tree is chosen taking
into account only the values [z of its children.

Example. Consider the model of tic-tac-toe presented
previously and let the formula M(z) = JyC(z,y) A
Jy C(y,z) A Jy R(z,y) A Jy R(y, x) express that x is the
position in the middle of the board. In Figure 3 we depicted a
simple evaluation game, which should be interpreted as fol-
lows. If the first player made a move to the middle position,
expressed by 3z (P(x) AM (x)), then the probability that the
first player will win, i.e. of payoff vector (1,0), is 0.7. The
probability that the second player will win is 0.1 and a draw
occurs with probability 0.2. On the other hand, if the first
player did not move to the middle, then the respective prob-
abilities are 0.4, 0.2 and 0.4. When the construction of the
UCT tree starts, a payoff vector is assigned to the state after
each of the 9 possible moves of the first player. The payoff
vector is one of (1,0),(0,1) and (0,0) and is chosen ran-
domly with probabilities 0.7, 0.1, 0.2 for the middle node in
the UCT tree and with probabilities 0.4, 0.2, 0.4 for all other
8 nodes, as prescribed by the evaluation game. The first it-
eration does not expand the UCT tree any further. In the
second iteration, if the middle node is chosen to play, then
its 8 children will be added to the UCT tree. The play in this
iteration continues from one of those children, as depicted
by the snaked line in Figure 3.

Learning Evaluation Games

Even during a single play of a game G we construct many
UCT trees, one for each move of each player, as described
above. A node appearing in one of those trees represents a
state of G and a record of the payoffs received in plays from
this node. After each move in G, we collect nodes from the
UCT tree from which a substantial number of plays were
played, i.e. which have n bigger than a confidence thresh-
old N. These nodes, together with their payoff statistics, are
used as a training set for the learning procedure.

The task of the learning mechanism started on a training
set is to construct an evaluation game &, preferably as sim-
ple as possible, which, started in a state from the training set,
gives payoffs with a distribution similar to the one known for
that state. Observe that the game £ constructed for a train-
ing set from some plays of G is therefore a simplified proba-
bilistic model of the events which occured during simulated
plays of G. Further — a game £ costructed from plays of G
which already used an evaluation game &’ models plays be-
tween players who already “know” £’. Note how this allows
incremental learning: each evaluation game can be used to
learn a new one, modeling plays between smarter players.

We present a non-deterministic construction of candidate
evaluation games, i.e. we provide only the basic operations
which can be used and leave the choice to an external func-
tion. Still, as we show next, even very simple choices can
produce useful evaluation games. During the whole con-
struction process the procedure maintains a few sets: a set G
of evaluation games, a set .S of structures, a set 7" of equa-
tion terms, and a set ® of formulas and real-valued terms.
Initially the set GG contains at least a trivial game, .S a trivial
structure and 7" and ® may be empty. The learning proce-
dure constructs new games, structures, terms and formulas
until, at some point, it selects one game from G as the result.

The rules for adding new formulas and terms to ® closely
resemble the syntax of our logic presented before. For each
syntactic rule we allow to add to ® its result if the required
formulas and terms are already in ®. For example, we can
add the literal P(x) to an empty set @, then add Q(x), cre-
ate P(z) A Q(z), and finally use the existential quantifier
to create Jx(P(x) A Q(x)). The rules for construction of
equational terms are analogous. For structures, we allow to
add a single element or a single relation tuple to a structure
from S and to take disjoint sum of two structures from S.
Finally for games we allow compositional rules similar to
the constructions in Parikh’s Game Logic, cf. [10].

Clearly, the rules above are very general and it is up to
the external function to use them to create a good evalua-
tion game. In our first experiments, we decided to focus
on a very simple heuristic which does not create any struc-
tures or equations. It uses only formulas and probabilistic
vertices and the payoff is always one of the vectors already
occuring in the training set. Moreover, we do not allow arbi-
trary formulas but only existentially quantified conjunctions
of literals. Evaluation games created by our function have
thus similar form to the one presented on the left side of
Figure 3. To decide which formula to add next, our function
extends formulas already kept in ® by a literal and keeps the
one which is the best selector. This is very similar to the

| White uses £ | Black uses £
Gomoku H 78% ‘ 82%

Breakthrough 77% 73%

Table 1: Playing with a learnt evaluation against pure UCT.

Apriori algorithm for frequent itemset mining, just instead
of items we use literals and a set of literals is understood as
their conjunction, existentially quantified. Transactions in
this sense are sets of states with average payoff in a specific
interval. The found formulas are then used as constraints of
a transition to a probabilistic node which is constructed so
as to model the distribution of payoffs in the states from the
training set which satisfy this formula. (cf. Figure 3).

Experimental Results

The described algorithms are a part of Toss (toss.
sourceforge.net), an open-source program imple-
menting the presented game model and a GUI for the play-
ers.5 To construct a scalable solver for our logic we used
a SAT solver (MiniSAT) to operate on symbolic representa-
tions of MSO variables and implmented a quantifier elim-
ination procedure for real numbers based on Muchnik’s
proof. The UCT algorithm and the rewriting engine were
implemented in OCaml and the GUI in Python using the
Qt4 library. In Toss, we defined a few board games and
some systems with continuous dynamics. In this paper, we
present preliminary results for Breakthrough and Gomoku,
two games often used to evaluate game playing programs.
The strength of the UCT algorithm has been evaluated be-
fore: it is respectable, but can only go so far without any
evaluation function. We used our learning procedure to get
an evaluation game for both Breakthrough and Gomoku.
Only top-performing formulas were selected, in case of
Breakthrough it was one simple formula meaning “beat if
possible” and for Gomoku the formulas suggested to put
stones near the already placed ones. While these formulas
are basic, we present in Table 1 the percentage of plays won
by a UCT player using the evaluation game against an oppo-
nent using none. As you can see, this is a significant majority
of cases — even playing black in Breakthrough and white in
Gomoku, i.e. starting second, which is a weaker position.

Perspectives

We presented a general model of games and an algorithm
which can both play the game in a reasonable way and learn
from past plays. There are several phenomena which we
did not include in our model. On the side of games, we
allowed neither imperfect nor incomplete information, so
players must fully know the game and its state, which is not
realistic. On the modeling side, relational structures give
no direct way to represent hierarchies, which should be im-
proved as well. For practical use of our system on larger ex-
amples it is also important to introduce a type system, which
should be integrated with our logic. We started to investigate

SCurrentl released version 0.4 of Toss does not support all the
features we described, in particular concurrent games.

this problem from the theoretical side in [8]. To improve the
learning procedure, we plan to investigate classical learning
algorithms (e.g. C4.5), and recent program induction meth-
ods (e.g. [9]). These can hopefully find new rewriting rules
and in this way generate novel evaluation games. One could
also try to analyze UCT using higher-order probabilities [6].

Even with the drawbacks mentioned above, the model we
presented is, to our knowledge, the most general kind of
games for which a playing algorithm is implemented. In ad-
dition to this generality, we have chosen a hypergraph rep-
resentation for states, which is already used in many other
contexts. Our playing algorithm is based on the upper con-
fidence bounds method, which is not only established for
board games but also scales to other domains, e.g. robotic
visual learning [11]. Thus, it could be opportune to use our
system as a basis for Al projects.

References

[1] S. Burmester, H. Giese, E. Miinch, O. Oberschelp,
F. Klein, and P. Scheideler. Tool support for the design
of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technol-
ogy Transfer, 10(3):207-222, 6 2008.

[2] H. Finnsson and Y. Bjornsson. Simulation-based ap-
proach to general game playing. In Proc. of AAAI’08.
AAAI Press, 2008.

[3] S. Gelly. A Contribution to Reinforcement Learning;
Application to Computer-Go. Dissertation, University
Paris-Sud 11, 2007.

[4] M. R. Genesereth, N. Love, and B. Pell. General game
playing: Overview of the AAAI competition. Al Mag-
azine, 26(2):62-72, 2005.

[5] B. Goertzel. Patterns, hypergraphs and embodied gen-
eral intelligence. In Proc. of IICNN’06, pages 451—
458, 2006.

[6] B. Goertzel, M. Ikle, and I. L. Freire Goertzel. Proba-
bilistic Logic Networks: A Comprehensive Framework
for Uncertain Inference. Springer, 2008.

[7] J. Y. Halpern and R. Pass. Iterated regret minimization:
A new solution concept. In Proc. of IJCAI’09), pages
153-158, 2009.

[8] L. Kaiser. Synthesis for structure rewriting systems. In
Proc. of MFCS 09, volume 5734 of LNCS, pages 415—
427. Springer, 2009.

[9] M. Looks and B. Goertzel. Program representation for
general intelligence. In Proc. of AGI’09, 2009.

[10] R.Ramanujam and S. Simon. Dynamic logic on games
with structured strategies. In Proc. of KR’08, pages
49-58. AAAI Press, 2008.

[11] M. Salganicoff, L. H. Ungar, and R. Bajcsy. Active
learning for vision-based robot grasping. Machine
Learning, 23:251-278, 1996.

