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Mentioned Models of Computation (deterministic)
Turing Machines Term Rewriting Graph Rewriting

o AIXI * OpenCog « SOAR

General Structure Rewriting Games
+ Non-determinism with multiple players (and probability)
 Hypergraph rewriting with constraints

+ Continuous dynamics (by ODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases
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Rewriting Example

P, P, Py

Embedding: o is injective and R} (ay,...,a,,) < R¥ (o(ay),...,0(ay,))
o: A=(ARLRY,...,RY) < (BRI,RY,....,R0)=%

Rewriting: B = A[ £ - /0] iff B= (A~ ¢(L))UR and,
for M ={(r,a)|a=0(l),re P! forsomel e L} U {(a,a)|a €A},
(bi,...,b,) €RP < (by,...,b,) e R} or (M x ... x b, M) n R* + &.
(in the second case at least one b; ¢ A)
Motivation: many questions naturally defined as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play
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EXAMPLE SYSTEM: GOMOKU (CONN ECT- 5)
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Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
e constraints: precondition, invariant, postcondition
Logic
» Monadic Second-Order Logic (MSO):
VX(x e XA (Vz,v(ze XAR(z,v) > veX)) > yeX)
« Real-valued terms with counting: 2- x(3y(P(y) A R(x,y))) + f(x)
« Real quantification: Ja e R(a*- f(x) +a-1=0) A (f(x) >2)
Semantics of Application
(1) All dynamics applies concurrently
(2) Rules with minimal time fire

(3) Discrete rewriting after continuous evolution
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How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success
Pick Max Upper Confidence

[In(n(v)+1)
% nnr(lwv)+1 /’\
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Improving Playout Policy
« Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good

Learning Hints
+ Make a play between two UCT players without hints
+ Collect high confidence states appearing during the play
+ Formula should separate winning from loosing states
« Search only for positive existential first-order formulas (Apriori)

Evaluation Games (0,0)
Improvements vs. UCT with random 1)

(1,0)
0.7
Ax(P(x) A M(x))

+ Breakthrough: beat if possible

ca. 70% improvement
~3x(P(x) A M(x))
0.4

« Gomoku: play near your stone (0,1) (1,0)

ca. 80% improvement
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