PLAYING GENERAL STRUCTURE REWRITING GAMES

Fukasz Kaiser
Joint work with Yukasz Stafiniak

Mathematische Grundlagen der Informatik
RWTH Aachen

AGI
Lugano, 2010

MOTIVATION

A system is intelligent if it is more useful to talk about it

in terms of goals than in terms of mechanisms.
Richard Sutton

MOTIVATION

A system is intelligent if it is more useful to talk about it

in terms of goals than in terms of mechanisms.
Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines Term Rewriting Graph Rewriting

o AIXI * OpenCog « SOAR

MOTIVATION

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.

Richard Sutton
Mentioned Models of Computation (deterministic)
Turing Machines Term Rewriting Graph Rewriting
o AIXI » OpenCog « SOAR

General Structure Rewriting Games
+ Non-determinism with multiple players (and probability)
 Hypergraph rewriting with constraints

+ Continuous dynamics (by ODE) in the model

MOTIVATION

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.
Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines Term Rewriting Graph Rewriting

o AIXI * OpenCog « SOAR

General Structure Rewriting Games
+ Non-determinism with multiple players (and probability)
 Hypergraph rewriting with constraints

+ Continuous dynamics (by ODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases

STRUCTURE REWRITING RULES

Rewriting Example

3/8

STRUCTURE REWRITING RULES

Rewriting Example

3/8

STRUCTURE REWRITING RULES

Rewriting Example

P, Py

Py

STRUCTURE REWRITING RULES

Rewriting Example

P, P, Py

Embedding: o is injective and R} (ay,...,a,,) < R¥ (o(ay),...,0(ay,))
o: A=(ARLRY,...,RY) < (BRI,RY,....,R0)=%

Rewriting: B = A[£ - /0] iff B= (A~ ¢(L))UR and,
for M ={(r,a)|a=0(l),re P! forsomel e L} U {(a,a)|a €A},
(byy...,by,) €RP < (by,...,b,) e R} or (M x ... x b, M) n R> + @.

(in the second case at least one b; ¢ 2A)

3/8

STRUCTURE REWRITING RULES

Rewriting Example

P, P, Py

Embedding: o is injective and R} (ay,...,a,,) < R¥ (o(ay),...,0(ay,))
o: A=(ARLRY,...,RY) < (BRI,RY,....,R0)=%

Rewriting: B = A[£ - /0] iff B= (A~ ¢(L))UR and,
for M ={(r,a)|a=0(l),re P! forsomel e L} U {(a,a)|a €A},
(bi,...,b,) €RP < (by,...,b,) e R} or (M x ... x b, M) n R* + &.
(in the second case at least one b; ¢ A)
Motivation: many questions naturally defined as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3/8

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE SYSTEM: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

EXAMPLE SYSTEM: GOMOKU (CONN ECT- 5)

CoNTINUOUS DYNAMICS

R-structures: A = (A,Ry,...,Rg, fi,..., fi) with fi : A—> R

Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
e constraints: precondition, invariant, postcondition

5/8

CoNTINUOUS DYNAMICS

R-structures: A = (A,Ry,...,Rg, fi,..., fi) with fi : A—> R

Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
e constraints: precondition, invariant, postcondition
Logic
» Monadic Second-Order Logic (MSO):
VX(x e XA (Vz,v(ze XAR(z,v) > veX)) > yeX)
« Real-valued terms with counting: 2- x(3y(P(y) A R(x,y))) + f(x)
« Real quantification: Ja e R(a*- f(x) +a-1=0) A (f(x) >2)

CoNTINUOUS DYNAMICS

R-structures: A = (A,Ry,...,Rg, fi,..., fi) with fi : A—> R

Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
e constraints: precondition, invariant, postcondition
Logic
» Monadic Second-Order Logic (MSO):
VX(x e XA (Vz,v(ze XAR(z,v) > veX)) > yeX)
« Real-valued terms with counting: 2- x(3y(P(y) A R(x,y))) + f(x)
« Real quantification: Ja e R(a*- f(x) +a-1=0) A (f(x) >2)
Semantics of Application
(1) All dynamics applies concurrently
(2) Rules with minimal time fire

(3) Discrete rewriting after continuous evolution

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout

6/8

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
+ Both players play randomly a large number of times
+ Calculate the ratio of wins of each player

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

i

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

i

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success
Pick Max Upper Confidence

[In(n(v)+1)
% nnr(lwv)+1 /’\

6/8

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

i

i

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

i

i

RUNNING THE SYSTEM

How do the players play? Monte Carlo with UCT and Learned Playout
Monte Carlo

+ Both players play randomly a large number of times

+ Calculate the ratio of wins of each player
UCT: Building a Tree during Random Plays

+ Idea: memorise first random moves, play minimax there
« History: encouraged by MoGo success

UCT FOR STRUCTURE REWRITING GAMES

Improving Playout Policy
« Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good

UCT FOR STRUCTURE REWRITING GAMES

Improving Playout Policy
« Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good

Learning Hints
+ Make a play between two UCT players without hints
+ Collect high confidence states appearing during the play
+ Formula should separate winning from loosing states
« Search only for positive existential first-order formulas (Apriori)

UCT FOR STRUCTURE REWRITING GAMES

Improving Playout Policy
« Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good

Learning Hints
+ Make a play between two UCT players without hints
+ Collect high confidence states appearing during the play
+ Formula should separate winning from loosing states
« Search only for positive existential first-order formulas (Apriori)

Evaluation Games (0,0)
Improvements vs. UCT with random 1)

(1,0)
0.7
Ax(P(x) A M(x))

+ Breakthrough: beat if possible

ca. 70% improvement
~3x(P(x) A M(x))
0.4

« Gomoku: play near your stone (0,1) (1,0)

ca. 80% improvement

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
+ Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games
+ Possible to learn formulas from simulated plays

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
+ Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games
+ Possible to learn formulas from simulated plays

Future Work
+ Types of structures (based on bounded clique-width)
+ Imperfect Information for players
+ Hierarchical modelling (objects?)
« Efficiency improvements

8/8

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
+ Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games
+ Possible to learn formulas from simulated plays

Future Work
+ Types of structures (based on bounded clique-width)
+ Imperfect Information for players
+ Hierarchical modelling (objects?)
« Efficiency improvements

toss.sourceforge.net

8/8

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
+ Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games
+ Possible to learn formulas from simulated plays

Future Work
+ Types of structures (based on bounded clique-width)
+ Imperfect Information for players
+ Hierarchical modelling (objects?)
« Efficiency improvements

toss.sourceforge.net

Thank You

8/8

