
Playing General Structure Rewriting Games

Łukasz Kaiser
Joint work with Łukasz Sta�niak

Mathematische Grundlagen der Informatik
RWTH Aachen

AGI
Lugano, 2010

1 / 8

Motivation

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.

Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines
• AIXI

Term Rewriting
• OpenCog

Graph Rewriting
• SOAR

General Structure Rewriting Games
• Non-determinism withmultiple players (and probability)
• Hypergraph rewriting with constraints
• Continuous dynamics (byODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases

2 / 8

Motivation

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.

Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines
• AIXI

Term Rewriting
• OpenCog

Graph Rewriting
• SOAR

General Structure Rewriting Games
• Non-determinism withmultiple players (and probability)
• Hypergraph rewriting with constraints
• Continuous dynamics (byODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases

2 / 8

Motivation

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.

Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines
• AIXI

Term Rewriting
• OpenCog

Graph Rewriting
• SOAR

General Structure Rewriting Games
• Non-determinism withmultiple players (and probability)
• Hypergraph rewriting with constraints
• Continuous dynamics (byODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases

2 / 8

Motivation

A system is intelligent if it is more useful to talk about it
in terms of goals than in terms of mechanisms.

Richard Sutton

Mentioned Models of Computation (deterministic)
Turing Machines
• AIXI

Term Rewriting
• OpenCog

Graph Rewriting
• SOAR

General Structure Rewriting Games
• Non-determinism withmultiple players (and probability)
• Hypergraph rewriting with constraints
• Continuous dynamics (byODE) in the model

Why a high-level model? Easier to program, debug, understand
Cf. programming languages, regular expressions, databases

2 / 8

Structure Rewriting Rules
Rewriting Example

a b

R

a b
R

Pa Pb Pb

R

R

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) ↪ (B, RB

1 , RB
2 , . . . , RB

k) =B

Rewriting:B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},
(b1, . . . , br i) ∈ R

B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Motivation: many questions naturally de�ned as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3 / 8

Structure Rewriting Rules
Rewriting Example

a b
R

a b
R

Pa Pb Pb

R

R

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) ↪ (B, RB

1 , RB
2 , . . . , RB

k) =B

Rewriting:B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},
(b1, . . . , br i) ∈ R

B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Motivation: many questions naturally de�ned as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3 / 8

Structure Rewriting Rules
Rewriting Example

a b
R

a b
R

Pa Pb Pb

R

R

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) ↪ (B, RB

1 , RB
2 , . . . , RB

k) =B

Rewriting:B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},
(b1, . . . , br i) ∈ R

B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Motivation: many questions naturally de�ned as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3 / 8

Structure Rewriting Rules
Rewriting Example

a b
R

a b
R

Pa Pb Pb

R

R

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) ↪ (B, RB

1 , RB
2 , . . . , RB

k) =B

Rewriting:B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},
(b1, . . . , br i) ∈ R

B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Motivation: many questions naturally de�ned as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3 / 8

Structure Rewriting Rules
Rewriting Example

a b
R

a b
R

Pa Pb Pb

R

R

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k) ↪ (B, RB

1 , RB
2 , . . . , RB

k) =B

Rewriting:B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},
(b1, . . . , br i) ∈ R

B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M × . . . × br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)

Motivation: many questions naturally de�ned as structure rewriting games:
constraint satisfaction, model checking, graph algorithms, games people play

3 / 8

Example System: Gomoku (Connect–5)

S

B B
S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B BB

B B B B B BB B B

B BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B BB

B B B B B B

B B B

B B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B B

B B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB B

B

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))

4 / 8

Example System: Gomoku (Connect–5)

S

B B

S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5(⋀
1≤i≤5

G(x i) ∧ (⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))
4 / 8

ContinuousDynamics

R-structures: A = (A, R1, . . . , Rk , f1, . . . , fl) with fi ∶ A→ R

Additional Parameters to a Rule:
• dynamics: system of ordinary di�erential equations
• updates: equations assigning values on the right-hand side
• constraints: precondition, invariant, postcondition

Logic
• Monadic Second-Order Logic (MSO):

∀X(x ∈ X ∧ (∀z, v(z ∈ X ∧ R(z, v)→ v ∈ X))→ y ∈ X)

• Real-valued terms with counting: 2 ⋅ χ(∃y(P(y) ∧ R(x , y))) + f (x)
• Real quanti�cation: ∃a ∈ R(a2 ⋅ f (x) + a − 1 = 0) ∧ (f (x) > 2)

Semantics of Application
(1) All dynamics applies concurrently
(2) Rules withminimal time �re
(3) Discrete rewriting a�er continuous evolution

5 / 8

ContinuousDynamics

R-structures: A = (A, R1, . . . , Rk , f1, . . . , fl) with fi ∶ A→ R

Additional Parameters to a Rule:
• dynamics: system of ordinary di�erential equations
• updates: equations assigning values on the right-hand side
• constraints: precondition, invariant, postcondition

Logic
• Monadic Second-Order Logic (MSO):

∀X(x ∈ X ∧ (∀z, v(z ∈ X ∧ R(z, v)→ v ∈ X))→ y ∈ X)

• Real-valued terms with counting: 2 ⋅ χ(∃y(P(y) ∧ R(x , y))) + f (x)
• Real quanti�cation: ∃a ∈ R(a2 ⋅ f (x) + a − 1 = 0) ∧ (f (x) > 2)

Semantics of Application
(1) All dynamics applies concurrently
(2) Rules withminimal time �re
(3) Discrete rewriting a�er continuous evolution

5 / 8

ContinuousDynamics

R-structures: A = (A, R1, . . . , Rk , f1, . . . , fl) with fi ∶ A→ R

Additional Parameters to a Rule:
• dynamics: system of ordinary di�erential equations
• updates: equations assigning values on the right-hand side
• constraints: precondition, invariant, postcondition

Logic
• Monadic Second-Order Logic (MSO):

∀X(x ∈ X ∧ (∀z, v(z ∈ X ∧ R(z, v)→ v ∈ X))→ y ∈ X)

• Real-valued terms with counting: 2 ⋅ χ(∃y(P(y) ∧ R(x , y))) + f (x)
• Real quanti�cation: ∃a ∈ R(a2 ⋅ f (x) + a − 1 = 0) ∧ (f (x) > 2)

Semantics of Application
(1) All dynamics applies concurrently
(2) Rules withminimal time �re
(3) Discrete rewriting a�er continuous evolution

5 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

Running the System

How do the players play? Monte Carlo with UCT and Learned Playout

Monte Carlo
• Both players play randomly a large number of times
• Calculate the ratio of wins of each player

UCT: Building a Tree during Random Plays
• Idea: memorise �rst random moves, playminimax there
• History: encouraged byMoGo success

.

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

.

6 / 8

UCT for Structure Rewriting Games

Improving Playout Policy
• Hints: formulas which separate good and bad states (moves)
• Example (Gomoku): connected group of stones is good

Learning Hints
• Make a play between two UCT players without hints
• Collect high con�dence states appearing during the play
• Formula should separate winning from loosing states
• Search only for positive existential �rst-order formulas (Apriori)

Evaluation Games
Improvements vs. UCT with random

• Breakthrough: beat if possible
ca. 70% improvement

• Gomoku: play near your stone
ca. 80% improvement

¬∃x(P(x) ∧M(x))

∃x(P(x) ∧M(x))

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

0.4
0.4

0.2

0.7
0.2

0.1

7 / 8

UCT for Structure Rewriting Games

Improving Playout Policy
• Hints: formulas which separate good and bad states (moves)
• Example (Gomoku): connected group of stones is good

Learning Hints
• Make a play between two UCT players without hints
• Collect high con�dence states appearing during the play
• Formula should separate winning from loosing states
• Search only for positive existential �rst-order formulas (Apriori)

Evaluation Games
Improvements vs. UCT with random

• Breakthrough: beat if possible
ca. 70% improvement

• Gomoku: play near your stone
ca. 80% improvement

¬∃x(P(x) ∧M(x))

∃x(P(x) ∧M(x))

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

0.4
0.4

0.2

0.7
0.2

0.1

7 / 8

UCT for Structure Rewriting Games

Improving Playout Policy
• Hints: formulas which separate good and bad states (moves)
• Example (Gomoku): connected group of stones is good

Learning Hints
• Make a play between two UCT players without hints
• Collect high con�dence states appearing during the play
• Formula should separate winning from loosing states
• Search only for positive existential �rst-order formulas (Apriori)

Evaluation Games
Improvements vs. UCT with random

• Breakthrough: beat if possible
ca. 70% improvement

• Gomoku: play near your stone
ca. 80% improvement

¬∃x(P(x) ∧M(x))

∃x(P(x) ∧M(x))

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

0.4
0.4

0.2

0.7
0.2

0.1

7 / 8

Conclusions

Structure Rewriting Games
• Generalmodel of games with structured states
• Establishing the winner is decidable for certain subclasses
• Simulation can be used to play the games
• Possible to learn formulas from simulated plays

Future Work
• Types of structures (based on bounded clique-width)
• Imperfect Information for players
• Hierarchical modelling (objects?)
• E�ciency improvements

toss.sourceforge.net
�ank You

8 / 8

Conclusions

Structure Rewriting Games
• Generalmodel of games with structured states
• Establishing the winner is decidable for certain subclasses
• Simulation can be used to play the games
• Possible to learn formulas from simulated plays

Future Work
• Types of structures (based on bounded clique-width)
• Imperfect Information for players
• Hierarchical modelling (objects?)
• E�ciency improvements

toss.sourceforge.net
�ank You

8 / 8

Conclusions

Structure Rewriting Games
• Generalmodel of games with structured states
• Establishing the winner is decidable for certain subclasses
• Simulation can be used to play the games
• Possible to learn formulas from simulated plays

Future Work
• Types of structures (based on bounded clique-width)
• Imperfect Information for players
• Hierarchical modelling (objects?)
• E�ciency improvements

toss.sourceforge.net

�ank You

8 / 8

Conclusions

Structure Rewriting Games
• Generalmodel of games with structured states
• Establishing the winner is decidable for certain subclasses
• Simulation can be used to play the games
• Possible to learn formulas from simulated plays

Future Work
• Types of structures (based on bounded clique-width)
• Imperfect Information for players
• Hierarchical modelling (objects?)
• E�ciency improvements

toss.sourceforge.net
�ank You

8 / 8

