PLAYING GAMES WHEN STATES HAVE RICH STRUCTURE

Yukasz Kaiser

CNRS & LIAFA
Paris

GT JEux MEETING
Paris, 2010

1/16

Motivation

ALGOSYN: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

2/16

Motivation

ALGOSYN: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station

2/16

Motivation

ALGOSYN: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

2/16

Motivation

ALGOSYN: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

rank [><] vane OMP — Pipe

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules

(2) properties given in MSO on structures + temporal logic for change

2/16

Overview

Structure Rewriting

3/16

Structure Rewriting Rules

Rewriting Example

4/16

Structure Rewriting Rules

Rewriting Example

4/16

Structure Rewriting Rules

Rewriting Example

4/16

Structure Rewriting Rules

Rewriting Example

Relational Structures and Embeddings
o: A=(ARLRY..,RY) > (BRERP,...,RP)=-%

Embedding: ¢ is injective and R? (ay, ..., a,,) < R? (a(a1),...,0(ay,))

4/16

Structure Rewriting Rules

Rewriting Example

Relational Structures and Embeddings

o: A=(ARNRY,...,R}) - (BRP,RY,...,RP)="D
Embedding: ¢ is injective and R? (ay, ..., a,,) < R? (a(a1),...,0(ay,))
Rewriting Definition

B =A[L > NR/o]iff B= (A~ o(L))UR and,
for M ={(r,a)|a=0(l),re P" forsomeleL} U {(a,a)|acA},

(by,...,b,) €RP < (by,...,b,,) € R} or (Mx...xb, M) N R} + &.
(in the second case at least one b; ¢ 2A)
4/16

Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

« edges labelled by rewriting rules

5/16

Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

« edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: ,ex¢ = A[£ — PR/], the player chooses the embedding o

+ Universal: 2,exc = A[£ — R], all occurrences of £ are rewritten to R

5/16

Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

« edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: ,ex¢ = A[£ — PR/], the player chooses the embedding o

+ Universal: 2,exc = A[£ — R], all occurrences of £ are rewritten to R

Winning conditions:
¢ L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit onlOQlIle boo = (UneN miZn A, Unen miZn R%i)
+ Reach ¢: Player 0 wins if the play reaches A s.t. 2 = ¢

5/16

Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

« edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: ,ex¢ = A[£ — PR/], the player chooses the embedding o

+ Universal: 2,exc = A[£ — R], all occurrences of £ are rewritten to R

Winning conditions:
¢ L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of A2z = (Unew Nizn Ai> Unent Nizn R™)
+ Reach ¢: Player 0 wins if the play reaches A s.t. 2 = ¢

Motivation: many questions are naturally defined as such games:
constraint satisfaction, model checking, graph measures, games people play

5/16

Example Game: Gomoku (Connect-5)

6/16

Example Game: Gomoku (Connect-5)

Example Game: Gomoku (Connect-5)

Example Game: Gomoku (Connect-5)

Example Game: Gomoku (Connect-5)

Example Game: Gomoku (Connect-5)

Example Game: Gomoku (Connect-5)

6/16

Overview

Separated Games

7116

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o 5 R o

Not Separated: o—=R 5 R 5

8/16

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o 5 R o

Not Separated: o—=R 5 R 5

Simple Rule £ — 9A: A is separated and £ is a single tuple in relation

8/16

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o 5 R o

Not Separated: o—=R 5 R 5

Simple Rule £ — 9A: A is separated and £ is a single tuple in relation

Example

8/16

Decidability of Simple Rewriting Games

Logics
+ L,[MSO]: Temporal properties expressed in L, (subsumes LTL) with
properties of structures (states) expressed in MSO

« lim MSO: Property of the limit structure expressed in MSO
Theorem

+ Let R be a finite set of (universal) simple structure rewriting rules,
« and ¢ be an L,[MSO] or lim MSO formula.

Then the set {m € R* : (lim)S(n) & ¢} is w-regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable.
The winner has a winning strategy of a simple form.

9/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k
@ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« e(i,j) to add all pairs of
(i, j)-coloured nodes to e

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k
@ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« e(i,j) to add all pairs of
(i, j)-coloured nodes to e

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k
@ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« e(i,j) to add all pairs of
(i, j)-coloured nodes to e

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k
@ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« e(i,j) to add all pairs of e(o,)
(i, j)-coloured nodes to e i
D

7N

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k
@ representing disjoint sum

+ i < jto change colour of all

nodes from i to j ®
. : R
« e(i,j) to add all pairs of o e(o,)
(i, j)-coloured nodes to e i
D
SN

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

o Leafs of different colours1...k

@ representing disjoint sum

0!
+ i < jto change colour of all 1
nodes from i to j ®
. : R
« e(i,j) to add all pairs of o e(o,)
(i, j)-coloured nodes to e i
D
7N

e —> 0 — e (] (]

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k c ‘I S
@ representing disjoint sum e(s,9)
+ i < jto change colour of all 1
nodes from i to j ®
- : R
« e(i,j) to add all pairs of o e(o,)
(i, j)-coloured nodes to e i
@
SN

e —> 0 —> e (] (]

10/16

Proof: Interpreting a Structure in a Tree

Description of how to build 2 is a tree 7 (2() with:

« Leafs of different colours 1. ..k . T .
@ representing disjoint sum e(s,9)
+ i < jto change colour of all 1
nodes from i to j ®
- : R
« e(i,j) to add all pairs of o e(o,)
(i, j)-coloured nodes to e i
@
SN
e —0 —— o o o
Theorem:

For every k there is an MSO-to-MSO interpretation 7 such that
for all structures 2l of clique-width < k holds Z(7 (1)) = .

10/16

Proof: Simple Rewriting in the Tree

O,

!

11/16

Proof: Simple Rewriting in the Tree

2 1 o (1)
6(2,3)
R @/69
i:;j /NN
2 3 R(0,1)

11/16

Proof: Simple Rewriting in the Tree

2 1 o (1)
e(2,3)
® ®
/ \ \
e 2 3 31
2«0
2 92 4 0,1« 4
e(2,0)
R e(3‘, 1)
O e(2,3)
3 1 4 &

11/16

Proof: Simple Rewriting in the Tree

e(2,0)
e(3,1)
e(i,3)

MSO-to-MSO interpretation: ¢ - y 2 3 R(0,1)

11/16

Proof: From Tree to Alternating Word Automata

!
S —>f(X, Y)

X ->g(X,Y)

Y > g(X,Y)

12/16

Proof: From Tree to Alternating Word Automata

T (1)
S —>f(X, Y)

®

X > g(X,Y) X Y

Y > g(X,Y)

12/16

Proof: From Tree to Alternating Word Automata

T (1)
S~ f(X.Y)

®

X > g(X,Y) X Y

Y > g(X,Y)

existential: pick transition

12/16

Proof: From Tree to Alternating Word Automata

T (1)
S —>f(X, Y)

®

X - g(X,Y) X, q Y,q

Y > g(X,Y)

existential: pick transition f.q0 — (qu, q2)

12/16

Proof: From Tree to Alternating Word Automata

T (r0)
S— f(X,Y)

®

X - g(X,Y) X, q Y,q,

Y > g(X,Y)

existential: pick transition frq0 = (q1,q2)

universal: left or right

12/16

Proof: From Tree to Alternating Word Automata

O

1590
S— f(X,Y)
® /
X - g(X,Y) @
O
Y—>g(X, Y)

existential: pick transition frq0 = (q1,q2)

universal: left or right

12/16

Proof: From Tree to Alternating Word Automata

existential: pick transition

universal: left or right

f>q0

%

f>q90 =~ (q192)

ignore

12/16

Proof: From Tree to Alternating Word Automata

O
S~ f(X.Y)

X ->g(X,Y)

Y > g(X,Y)

existential: pick transition

universal: left or right

f>40
X Y

f>q90 =~ (q192)

ignore

12/16

Overview

Outlook

3/16

Imperfect Information

How to Represent Imperfect Information?

+ simply allow three-valued relations?
« using observable elements?
« with formulas known to hold?

+ methods from databases with imperfect information?

14/16

Imperfect Information

How to Represent Imperfect Information?

+ simply allow three-valued relations?
« using observable elements?
« with formulas known to hold?

+ methods from databases with imperfect information?

Application: abstraction and abstraction refinement for complex games.

14/16

Strategies and Higher-Order Games

Strategies in Separated Games
+ Winning positions can be defined in MSO

+ What is a simple form of strategy?
Ql1—>Q[2—>...—>Q[n—>?

« Certain forms can be derived from the presented proof

15/16

Strategies and Higher-Order Games

Strategies in Separated Games
+ Winning positions can be defined in MSO

+ What is a simple form of strategy?
Ql1—>Q[2—>...—>Q[n—>?

« Certain forms can be derived from the presented proof

Higher-Order Structures and Rewriting

-@ - 00

Q

a

-® - OO 6
= g \ I
i @

R X ;) N_ 7/

Does this correspond to higher-order pushdown systems and strategies?

15/16

Conclusions

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses

16/16

Conclusions

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses

Extensions
+ Preconditions and postconditions in rewriting rules
» More complex kinds of connections in rules
« Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
- simple quantitative logics can be used

Questions
« When do strategies of a simple form exist?
« What about games with imperfect information?
« How can we define higher-order games?

16/16

Conclusions

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses

Extensions
+ Preconditions and postconditions in rewriting rules
» More complex kinds of connections in rules
« Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
- simple quantitative logics can be used

Questions
« When do strategies of a simple form exist?
« What about games with imperfect information?
« How can we define higher-order games?

Thank You

16/16

	Structure Rewriting
	Separated Games
	Outlook

