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Motivation
AlgoSyn: Algorithmic Synthesis of Reactive and Discrete-Continuous Systems

Part of a pumping station Structures we usually consider

Can we model states by arbitrary relational structures?
(1) change described using appropriate rewriting rules
(2) properties given in MSO on structures + temporal logic for change
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Structure Rewriting Rules

Rewriting Example

a b

R

a b
R

Pa Pb Pb

R

R

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k ) → (B, RB

1 , RB
2 , . . . , RB

k ) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i) ⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ R
B
i ⇔ (b1, . . . , br i) ∈ R

R
i or (b1M× . . .×br iM) ∩ RA

i ≠ ∅.
(in the second case at least one b j ∉ A)
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Structure Rewriting Games
Game arena (of a two-player zero-sum game) is a directed graph with:

• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning conditions:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

• Reach φ: Player 0 wins if the play reaches A s.t. A ⊧ φ

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play
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Example Game: Gomoku (Connect–5)

S

B B
S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5( ⋀
1≤i≤5

G(x i) ∧ ( ⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))
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Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b

R

a b
R

Pa Pb Pb

R

R
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Decidability of Simple Rewriting Games

Logics
• Lµ[MSO]: Temporal properties expressed in Lµ (subsumes LTL) with
properties of structures (states) expressed in MSO

• limMSO: Property of the limit structure expressed in MSO

�eorem

• Let R be a �nite set of (universal) simple structure rewriting rules,
• and φ be an Lµ[MSO] or limMSO formula.

�en the set {π ∈ Rω ∶ (lim)S(π) ⊧ φ} is ω-regular.

Corollary

Establishing the winner of (universal) �nite simple rewriting games is decidable.
�e winner has a winning strategy of a simple form.

9 / 16



Proof: Interpreting a Structure in a Tree

Description of how to build A is a tree T (A) with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← j to change colour of all
nodes from i to j

• e(i , j) to add all pairs of
(i , j)-coloured nodes to e

● ●● ● ●●

⊕

e(●, ●)●

⊕

e(●, ●)

● ← ●

�eorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structures A of clique-width ≤ k holds I(T (A)) ≅ A.
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Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ → ψ

S

2

⊕

3

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)
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Proof: From Tree to Alternating Word Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore
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Imperfect Information
How to Represent Imperfect Information?

• simply allow three-valued relations?
• using observable elements?
• with formulas known to hold?
• methods from databases with imperfect information?

Application: abstraction and abstraction re�nement for complex games.
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Strategies and Higher-Order Games
Strategies in Separated Games

• Winning positions can be de�ned inMSO
• What is a simple form of strategy?

A1 → A2 → . . . → An → ?
• Certain forms can be derived from the presented proof

Higher-Order Structures and Rewriting

r = x
Q Px Q

a

s = x
R Px Pr

x , R

b

. . .
a a

a

a

a

a

b b
b

b
bb

Does this correspond to higher-order pushdown systems and strategies?
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Conclusions
Structure Rewriting Games

• Generalmodel of games with structured states
• Establishing the winner is decidable for certain subclasses

Extensions
• Preconditions and postconditions in rewriting rules
• More complex kinds of connections in rules
• Continuous dynamics can be added

• de�ned e.g. using R-structures and di�erential equations
• simple quantitative logics can be used

Questions
• When do strategies of a simple form exist?
• What about games with imperfect information?
• How can we de�ne higher-order games?

�ank You
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