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Structure Rewriting Rules

Relational Structures and Embeddings

σ ∶ A = (A, RA
1 , R

A
2 , . . . , R

A
k ) → (B, RB

1 , R
B
2 , . . . , R

B
k ) =B

Embedding: σ is injective and RA
i (a1, . . . , ar i)⇔ RB

i (σ(a1), . . . , σ(ar i))

Rewriting De�nition

B = A[L→R/σ] i� B = (A∖ σ(L))∪̇R and,
for M = {(r, a) ∣ a = σ(l), r ∈ PR

l for some l ∈ L} ∪ {(a, a) ∣ a ∈ A},

(b1, . . . , br i) ∈ RB
i ⇔ (b1, . . . , br i) ∈ RR

i or (b1M × . . . × br iM) ∩ RA
i ≠ ∅.

(in the second case at least one b j ∉ A)
Rewriting Example

a b
R

a b
R

Pa Pb Pb
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Structure Rewriting Games

Game arena is a directed graph with:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→R:
• Existential: Anext = A[L→R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→R], all occurrences of L are rewritten toR

Winning conditions:
• Lµ (or temporal) formula ψ withMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit of A0A1A2 . . . = (⋃n∈N⋂i≥n Ai , ⋃n∈N⋂i≥n RAi)

• Reach φ: Player 1 wins if the play reaches A s.t. A ⊧ φ

Motivation: many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, games people play
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Example Game: Gomoku (Connect–5)

S

B B
S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5( ⋀
1≤i≤5

G(x i) ∧ ( ⋀
1≤i≤5

R(x i , x i+1) ∨ ⋀
1≤i≤5

C(x i , x i+1)∨

⋀
1≤i≤5

∃y(R(x i , y) ∧ C(y, x i+1)) ∨ ⋀
1≤i≤5

∃y(R(x i , y) ∧ C(x i+1 , y))))
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Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→R: R is separated and L is a single tuple in relation

Example

a b
R

a b
R

Pa Pb Pb
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Previous Result

Logics
• Lµ[MSO]: Temporal properties expressed in Lµ (subsumes LTL) with
properties of structures (states) expressed in MSO

• limMSO: Property of the limit structure expressed in MSO

�eorem

• Let R be a �nite set of (universal) simple structure rewriting rules,
• and φ be an Lµ[MSO] or limMSO formula.

�en the set {π ∈ Rω ∶ (lim)S(π) ⊧ φ} is ω-regular.

Corollary

Establishing the winner of (universal) �nite simple rewriting games is decidable.

6 / 12



Implementing the Result

Using Tree Automata
• Tool: MONA

• Developed at BRICS since 1996 by Nils Klarlund and Anders Møller
• Symbolic representation with BDDs
• Minimisation at each step

• Example: a simple tic-tac-toe game
• Result: memory over�ow on 2 × 2 grid
• Problems due to ine�cient coding

• Bounded clique-width graphs not good for MONA
• Only universal interpretation decidable, must encode games

Present Approach
• Use simulation to detect promising moves
• Construct a good (not necessarily optimal) strategy
• Perspective: prove that the strategy is winning
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Simulation-Based Game Playing

Game Playing Methods
• General pattern: Minimax
• α-β pruning and other optimisations
• Multiple special heuristics, opening tables
• Common pattern: need position evaluation function

Monte Carlo Evaluation Function
How to determine the value of a position v in a general game?

• both players play from v randomly a (large) number of times
• return the ratio of wins of the player

Immediate Problems:
• Makes trivially stupidmoves
• Very �at lookahead
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Upper Confidence Bounds for Trees

Build a tree during Monte-Carlo
• Idea: memorise �rst Monte-Carlo moves,Minimax there
• History: encouraged byMoGo success

. . . . . .

Pick Max Upper Con�dence

C ⋅ ∆ ⋅
√

ln(n(v)+1)
n(w)+1

. . . . . .
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UCT for Structure Rewriting Games

Problems
• Random player is stupid
• Large number of formula evaluations (slow)

Improvements
• Hints for random player using formulas
• Makes it even slower: improve solver

Results of Hints
• Breakthrough: beat if possible ca. 70% improvement
• Gomoku: play near your stone ca. 80% improvement
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How toMake Solver Faster?

Solver Requirements
(1) Obvious: evaluate formulas fast
(2) Repetition: the same formula onmany structures
(3) Composition: structures change only slightly

MSO is compositional:

�k(A⊕connectB) =�k(A)⊕connect�k(B)

Using this requiresmultiple CNF-DNF conversions

Current Solver Architecture
• FO assignments: represented directly
• MSO assignments: semi-symbolically

(1 ∈ X ∧ 2 ∈ X ∧ 3 ∉ X) ∨ (1 ∉ X)

• Operations on MSO assignments: use SAT solver, CNF-DNF again
• Are BDDs better? Unclear
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Outlook

Learning formulas
• Many states collected during play
• Formula should separate high-con�dence good from bad states
• Preliminary tests: good but parameter dependent
• Perspective: describe full winning region

Extensions
• Already supported: preconditions and postconditions
• Types of structures (based on bounded clique-width)
• Continuous dynamics can be added

• de�ned e.g. using R-structures and di�erential equations
• simple quantitative logics can be used

�ank You
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