PLAYING STRUCTURE REWRITING GAMES WITH
FORMULAS ON STATES

Lukasz Kaiser
Ongoing work with help from D. Fischer, T. Ganzow, E. Abraham, U. Loup, L. Stafiniak

Mathematische Grundlagen der Informatik
RWTH Aachen

ALGOSYN
Aachen, 2009

STRUCTURE REWRITING RULES

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRP,RY,....,RP)=15

Embedding: ¢ is injective and R? (ay, ..., a,,) < RP (a(a1),...,0(ay,))

2/12

STRUCTURE REWRITING RULES

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRP,RY,....,RP)=15
Embedding: ¢ is injective and R? (ay, ..., a,,) < RP (a(a1),...,0(ay,))
Rewriting Definition
B=AL > NR/o]iff B= (A~ o(L))UR and,
for M ={(r,a)|a=0(l),re P forsomel e L} U {(a,a)|a €A},
(bi,....,b;,) €RP < (by,...,b,) e R} or (M x ... x b, M) N R* # &.

(in the second case at least one b; ¢ %)
Rewriting Example

i

2/12

STRUCTURE REWRITING GAMES

Game arena is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

3/12

STRUCTURE REWRITING GAMES

Game arena is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R

3/12

STRUCTURE REWRITING GAMES

Game arena is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:

« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R
Winning conditions:

« L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of o212 ... = (Unew Nizn Ais Unen Nizn R™)
+ Reach ¢: Player 1 wins if the play reaches 2 s.t. 2 = ¢

3/12

STRUCTURE REWRITING GAMES

Game arena is a directed graph with:

« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:

« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R
Winning conditions:

« L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of o212 ... = (Unew Nizn Ais Unen Nizn R™)
+ Reach ¢: Player 1 wins if the play reaches 2 s.t. 2 = ¢

Motivation: many questions are naturally defined as such games:
constraint satisfaction, model checking, graph measures, games people play

3/12

ExAMPLE GAME: GOMOKU (CONNECT-5)

4/12

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

EXAMPLE GAME: GOMOKU (CONN ECT- 5)

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o2 o R 5

Not Separated: o—R 5 R 5

5/12

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R
Not Separated:

Simple Rule £ — fR: A is separated and £ is a single tuple in relation

5/12

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated:
Not Separated:

Simple Rule £ — fR: A is separated and £ is a single tuple in relation

i

Example

5/12

PREVIOUS RESULT

Logics

+ L,[MSO]: Temporal properties expressed in L, (subsumes LTL) with
properties of structures (states) expressed in MSO

+ lim MSO: Property of the limit structure expressed in MSO

Theorem

+ Let R be a finite set of (universal) simple structure rewriting rules,
« and ¢ be an L,[MSO] or lim MSO formula.

Then the set {m € R : (lim)S(7) = ¢} is w-regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable.

6/12

IMPLEMENTING THE RESULT

Using Tree Automata

« Tool: MONA

«+ Developed at BRICS since 1996 by Nils Klarlund and Anders Moller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game
+ Result: memory overflow on 2 x 2 grid

+ Problems due to inefficient coding

+ Bounded clique-width graphs not good for MONA
 Only universal interpretation decidable, must encode games

7112

IMPLEMENTING THE RESULT

Using Tree Automata

« Tool: MONA

«+ Developed at BRICS since 1996 by Nils Klarlund and Anders Moller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game
+ Result: memory overflow on 2 x 2 grid

+ Problems due to inefficient coding

+ Bounded clique-width graphs not good for MONA
 Only universal interpretation decidable, must encode games

Present Approach
+ Use simulation to detect promising moves
+ Construct a good (not necessarily optimal) strategy

« Perspective: prove that the strategy is winning

7112

SIMULATION-BASED GAME PLAYING

Game Playing Methods
+ General pattern: Minimax
+ «a-f pruning and other optimisations
+ Multiple special heuristics, opening tables

« Common pattern: need position evaluation function

8/12

SIMULATION-BASED GAME PLAYING

Game Playing Methods
+ General pattern: Minimax
+ «a-f pruning and other optimisations
+ Multiple special heuristics, opening tables

« Common pattern: need position evaluation function

Monte Carlo Evaluation Function
How to determine the value of a position v in a general game?

+ both players play from v randomly a (large) number of times

« return the ratio of wins of the player

8/12

SIMULATION-BASED GAME PLAYING

Game Playing Methods
+ General pattern: Minimax
+ «a-f pruning and other optimisations
+ Multiple special heuristics, opening tables
« Common pattern: need position evaluation function
Monte Carlo Evaluation Function
How to determine the value of a position v in a general game?
+ both players play from v randomly a (large) number of times

« return the ratio of wins of the player

Immediate Problems:
+ Makes trivially stupid moves
+ Very flat lookahead

8/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

e

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

e

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

Pick Max Upper Confidence

In(n(v)+1)
C-A- \/ n(w)+1 /’\

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

e

i

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

e

i

9/12

UprPER CONFIDENCE BOUNDS FOR TREES

Build a tree during Monte-Carlo
o Idea: memorise first Monte-Carlo moves, Minimax there

+ History: encouraged by MoGo success

9/12

UCT FOR STRUCTURE REWRITING GAMES

Problems
« Random player is stupid

+ Large number of formula evaluations (slow)

10/12

UCT FOR STRUCTURE REWRITING GAMES

Problems
« Random player is stupid

+ Large number of formula evaluations (slow)

Improvements
+ Hints for random player using formulas

» Makes it even slower: improve solver

10/12

UCT FOR STRUCTURE REWRITING GAMES

Problems
« Random player is stupid

+ Large number of formula evaluations (slow)

Improvements
+ Hints for random player using formulas

» Makes it even slower: improve solver

Results of Hints
+ Breakthrough: beat if possible ca. 70% improvement

+ Gomoku: play near your stone ca. 80% improvement

10/12

How 1O MAKE SOLVER FASTER?

Solver Requirements

(1) Obvious: evaluate formulas fast

(2) Repetition: the same formula on many structures
(3) Composition: structures change only slightly

11/12

How 1O MAKE SOLVER FASTER?

Solver Requirements

(1) Obvious: evaluate formulas fast

(2) Repetition: the same formula on many structures
(3) Composition: structures change only slightly

MSO is compositional:

r—[hk(m EBconnect %) _ Thk(Ql) 69connect Thk(%)

Using this requires multiple CNF-DNF conversions

11/12

How 1O MAKE SOLVER FASTER?

Solver Requirements

(1) Obvious: evaluate formulas fast

(2) Repetition: the same formula on many structures
(3) Composition: structures change only slightly

MSO is compositional:

Thk(m EBconnect %) _ Thk(Ql) 69connect Thk(%)

Using this requires multiple CNF-DNF conversions
Current Solver Architecture

+ FO assignments: represented directly
« MSO assignments: semi-symbolically

(leXA2eXA3¢X)Vv(1¢X)

+ Operations on MSO assignments: use SAT solver, CNF-DNF again
+ Are BDDs better? Unclear

11/12

OUTLOOK

Learning formulas
+ Many states collected during play
+ Formula should separate high-confidence good from bad states
+ Preliminary tests: good but parameter dependent

« Perspective: describe full winning region

12/12

OUTLOOK

Learning formulas
+ Many states collected during play
+ Formula should separate high-confidence good from bad states
+ Preliminary tests: good but parameter dependent

« Perspective: describe full winning region

Extensions
+ Already supported: preconditions and postconditions
 Types of structures (based on bounded clique-width)

+ Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
« simple quantitative logics can be used

12/12

OUTLOOK

Learning formulas
+ Many states collected during play
+ Formula should separate high-confidence good from bad states
+ Preliminary tests: good but parameter dependent

« Perspective: describe full winning region

Extensions
+ Already supported: preconditions and postconditions

 Types of structures (based on bounded clique-width)
+ Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
« simple quantitative logics can be used

Thank You

12/12

