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Motivation

Intuitive Models of the World

• Intuitive is important, as coding is costly and error-prone
• Hypergraphs are a general model of discrete structures

• studied in so�ware engineering and design for a long time
• Games are a natural model of interaction

• Rewriting can be used as actions of players

Methods for Analysis of Systems

• �eorem proving, Abstraction (very general, needs guidance)
• Termination analysis (guessing induction order) (general)
• Regularity and Automata (speci�c, basis for type systems)
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Definition of GraphMinors

G ≼ H if G can be obtained from H by
• removing edges
• contracting edges
• deleting singular vertices

Example

≼
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Definition of Directed HypergraphMinors

G ≼ H if there is a collapse of H to G
• map vertices of G to connected graphs of vertices of H

• di�erent vertices of G mapped to disjoint sets in H
• any two connected vertices in the result incident to a hyperedge of H

• �nd hyperedges of G as hyperedges of H
• connect on the ith position of the edge some vertex in the ith set
• strong: use other hyperedges than the ones for incidence above

Example

≼
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Wagner Conjecture

�eorem (Seymour-Robertson; Graphs: 2004, Hypergraphs: to appear)

Minor ordering is a well-quasi-order: in every in�nite sequence G0,G1, . . . of
�nite graphs there exist i < j such that Gi ≼ G j.

Corollary

Every upwards closed set has a �nite basis.
Every downwards closed set admits a �nite obstruction set.

Consequences
• Kruskal’s tree theorem
• Kuratowski’s planar graphs theorem (weak form)
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Algorithmic Results

�eorem (Seymour-Robertson)

Fix G. �e algorithmic problem: given H is G ≼ H is in TIME(O(∣H∣3)).

Consequences
• Every problem downwards closed under minors is in O(n3)
• Checking planarity is in O(n3)
• For every k, checking if Entanglement G = k is in O(n3)
(For undirected graphs G)
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From Term to Graph Rewriting

Set of rules l → r

f

g

X Y

Z

h

X Z

X Y

Z

X Z

Operation
• Find l σ
• Remove it
• Insert rσ

Notes:
• Observe edge labels denoting both symbol and arity
• De�ned only for le�-linear (perhaps better this way)
• Tight correspondence only for right-linear (graphs: constant memory)
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From Term to Graph Rewriting

Set of rules l̂ → r̂

f

g

X Y

Z

h

X Z

X Y

Z

X Z

Operation
• Find a tree isomorphic to l without variables
• Remove it
• Insert r and reconnect

Notes:
• Observe edge labels denoting both symbol and arity
• De�ned only for le�-linear (perhaps better this way)
• Tight correspondence only for right-linear (graphs: constant memory)
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Hypergraph Rewriting

Rule

X

Y

Z

V

X Y Z V

Application

Note: e.g. Y matched all black successors (position 1 in black hyperedge)
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Term Rewriting Termination Overview

Embedding and Simpli�cation Orders

• Let t <emb s if the corresponding graphs t̂ ≼ ŝ (topological embedding)
• An ordering < is a simpli�cation order if it contains <emb and is
well-behaved under contexts and substitutions

• Kruskal’s tree theorem: simpli�cation orders are well-quasi-orders
• < is a simpli�cation order and r < l for each rule↝ the system terminates

Classical simpli�cation orders

• Path orderings: LPO, RPO, RPOS (with status)
• Knuth-Bendix ordering
• Polynomial orders

Problem
f ( f (x)) → f (g( f (x)))

Help: dependency pairs, abstraction
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Hypergraph Rewriting Termination?

�e basis given by Graph Minor�eorem!

Problems

• Not clear whether r ≼ l is enough
• But there are some su�cient conditions

• Assume that the collapse sets of variables are singletons
• More abstract conditions by Barbara König (2008, single pushout)

• Does changing directions or labels spoil anything?

Possible Work

• Clarify at least some of the problems above
• Is there something similar to simpli�cation orders?
• Are there notions analogous to LPO, RPO?
• Can other approaches be used?
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Let’s Build a Graph

Pieces to build a graph:
• Bags of single nodes with di�erent colors 1 . . .K
• Paint to change color of all nodes from i to j
• Edges to connect all nodes of color i to all of color j

Example:

● ●● ●●● ●● . . . ●●
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Interpreting a Graph in a Tree

Description of how to build G is a tree T (G):

● ●● ●

●●

⊕

B → G●

⊕

G → R

G ∶= Black

�eorem:
For every K there is an MSO-to-MSO interpretation I such that
for all graphs G of clique-width ≤ K holds

I(T (G)) ≅ G
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Bounded Clique-Width Graphs

Corollary:
For every K and φ ∈ MSO(Graphs) there exists ψ ∈ MSO(Tree) such that

Clique-Width(K) ⊧ φ ⇐⇒ Binary Tree ⊧ ψ

Examples:
• singly or doubly-linked lists, with back-links
• nested lists (lists of lists), trees
• all graphs of bounded tree-width
• cliques, full bipartite graphs

Characterizations:
• All families of graphs uniformly MSO-interpretable in the binary tree.
• Con�gurations of pushdown automata (mod ε-transitions)
• Graphs obtained by simple rewriting (later)

Applications: e.g. veri�cation of heap-manipulating programs
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Simple Hypergraph Rewriting

Simple Tree Rewriting (ground and le�-hand side is a constant)

List→ cons(o, List)

Note: simple due to deep connection to automata and decidability results

Simple Hypergraph Rewriting (Courcelle, Engelfriet, Rozenberg, 1991)

v0 v1
X

X

0 1 0 1

X

X

Separated Hypergraphs: no vertex is incident to two non-terminal edges
Separated: X a X

Not Separated: X X
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Games Played with Hypergraphs

De�nition

• Fix a �nite set of separated handle rewriting rules S
• Game: directed graph

• vertices assigned to players
• edges labelled by rules from S

• Play: construction of a sequence of hypergraphs
• Winning condition: de�ned in MSO over the limit hypergraph

Rewriting Sequences and Limit Hypergraphs

• G[X → H] is G with all∗ occurrences of X rewritten to H
• Limit of G0 → G1 → G3 → . . . : (⋃n∈N⋂i≥n Vi , ⋃n∈N⋂i≥n Ei)

∗Notes:

• Rewriting separated graphs is con�uent
• If players pick positions: undecidable, see Active context-free games,
thanks to Anca Muscholl
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Example: Playing Gomoku

S

i , j i , j
S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 02, 0
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1, 0 2, 02, 0

20 / 27



Example: Playing Gomoku

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 10, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 0

1, 0 2, 0

2, 0

20 / 27



Example: Playing Gomoku

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 0

1, 0 2, 0

2, 0

20 / 27



Example: Playing Gomoku

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1

−4, −2 −3, −2 −2, −2 −1, −2 0, −2 1, −2 2, −2 3, −2 4, −2

−4, −3 −3, −3 −2, −3 −1, −3 0, −3 1, −3 2, −3 3, −3 4, −3

−4, −4 −3, −4 −2, −4 −1, −4 0, −4 1, −4 2, −4 3, −4 4, −4

−4, 1 −3, 1 −2, 1 −1, 1 1, 1 2, 1 3, 1 4, 1

0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 0

2, 0

20 / 27



Example: Playing Gomoku

S

i , j i , j

S

−4, 4 −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, −1 −3, −1 −2, −1 −1, −1 0, −1 1, −1 2, −1 3, −1 4, −1
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0, 1

−4, 0 −3, 0 −2, 0 −1, 0 3, 0 4, 0

0, 0 1, 0 2, 01, 0 2, 02, 0
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Example: Constructing a Ladder

S

0

1

X

0

1

X

0

1

X . . .

S X

X X

0

1
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Example: Constructing a Ladder

S

0

1

X

0

1

X

0

1

X

. . .

S XX X

0

1

21 / 27



Result on Games

�eorem

• Let S be a �nite set of separated handle rewriting rules
• and φ be an MSO formula (giving the winning condition)

�en the set {π ∈ Sω ∶ limG(π) ⊧ φ} is ω-regular.

Corollary

Establishing the winner of �nite separated handle rewriting games is decidable.

Other Consequences

• Strategies only require �nite memory
• Decidability and determinacy for concurrent stochastic arenas
• In multiplayer games rational (iteratively weakly dominant) strategies
are computable
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Proof: Separated Graph Rewriting as a Tree

S

(4, 5)

(6, 7)

(0, 1)

(2, 3)

X

(4, 5)

(6, 7)

(8, 1)

(8, 3)

(8, 8)

(8, 8)

X

MSO-to-MSO interpretation: φ → ψ

S

(4, 5)

⊕

(6, 7)

⊕
e(4, 7)
e(4, 1)
e(6, 3)

X(0, 1, 2, 3)c(7, 3)
c(5, 1)
c(∗, 8)
e(6, 3)
e(4, 1)
e(4, 7)

(4, 5)

⊕

(6, 7)

⊕

X(0, 1, 2, 3)
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Proof: From Tree to AlternatingWord Automata

⋮

S → f (X ,Y)

X → g(X ,Y)

Y → g(X ,Y)

existential: pick transition

universal: le� or right

S , q0

f , q0

X Y

f , q0

X , q1 Y , q2

f , q0

X Y , q2

f , q0

g Y , q2

X Y

f , q0

g g , q2

X Y X Y
. . .. . .

f , q0 → (q1, q2)

ignore
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Application: Pushdown Parity Games

q0 , �

q0 , �

q1 , a

q2 , b

pus
h a

pop

push b

pop

q1 , a

q2 , b

pus
h a

pop

push b

pop

q3 , a

q4 , b

q5 , a

q6 , b

push
a

pop

push b

pop

push
a

pop

push b

pop

q3 , a

q4 , b

q5 , a

q6 , b

push
a

pop

push b

pop

push
a

pop

push b

pop

. . .

We can de�ne the parity winning condition over states in MSO, or

Play a Game on the Resulting Graph
(Higher-order Hypergraph Rewriting Games)
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Application of Higher-order Games

Problem: ∃x ∀y R(x , y) with an automaton (↝MSO formula) recognizing R

Solution: build the word x0 ⊗ y0, the Veri�er picks x0, the Falsi�er y0.

Higher-order game

S0 S0(a , a)

S0 S0(a , b)
S1 S1

S0 S0(b , a)

S0 S0(b , b)
S1 S1

Constructed game

S 1
S0 S0(a , a)

S0 S0(a , b)

S 1
S0 S0(b , a)

S0 S0(b , b)

. . .

Constructed hypergraph

S0 S0
(a , b)(a , b) (b , b) . . .

26 / 27
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Summary

Hypergraph Rewriting Games are Fun!

De�nition Problems

• Hypergraph rewriting without pushouts?
• Can we really use variables?
• Why all non-terminals are separated? What if only corresponding ones?

Existing Tools

• Minor ordering which is a well-quasi-order
• Vertex replacement construction
• MSO-to-MSO interpretations and automata
• Standard ω-regular games

�ank You

27 / 27



Summary

Hypergraph Rewriting Games are Fun!

De�nition Problems

• Hypergraph rewriting without pushouts?
• Can we really use variables?
• Why all non-terminals are separated? What if only corresponding ones?

Existing Tools

• Minor ordering which is a well-quasi-order
• Vertex replacement construction
• MSO-to-MSO interpretations and automata
• Standard ω-regular games

�ank You
27 / 27


	Graph Minors
	Termination Analysis
	Graphs of Bounded Clique-Width
	Simple Hypergraph Rewriting Games

