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MOTIVATION

Intuitive Models of the World

« Intuitive is important, as coding is costly and error-prone
+ Hypergraphs are a general model of discrete structures

« studied in software engineering and design for a long time
+ Games are a natural model of interaction

« Rewriting can be used as actions of players



MOTIVATION

Intuitive Models of the World

« Intuitive is important, as coding is costly and error-prone
+ Hypergraphs are a general model of discrete structures

« studied in software engineering and design for a long time
+ Games are a natural model of interaction

« Rewriting can be used as actions of players

Methods for Analysis of Systems

+ Theorem proving, Abstraction (very general, needs guidance)
+ Termination analysis (guessing induction order) (general)

+ Regularity and Automata (specific, basis for type systems)



OVERVIEW

Graph Minors



DEFINITION OF GRAPH MINORS

G < Hif G can be obtained from H by
« removing edges
« contracting edges

+ deleting singular vertices

Example

A
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DEFINITION OF DIRECTED HYPERGRAPH MINORS

G < H if there is a collapse of H to G
+ map vertices of G to connected graphs of vertices of H

« different vertices of G mapped to disjoint sets in H
« any two connected vertices in the result incident to a hyperedge of H

« find hyperedges of G as hyperedges of H
« connect on the ith position of the edge some vertex in the ith set
« strong: use other hyperedges than the ones for incidence above

Example



WAGNER CONJECTURE

Theorem (Seymour-Robertson; Graphs: 2004, Hypergraphs: to appear)

Minor ordering is a well-quasi-order: in every infinite sequence Gy, Gy, . . . of
finite graphs there exist i < j such that G; < G;.

Corollary

Every upwards closed set has a finite basis.
Every downwards closed set admits a finite obstruction set.

Consequences
o Kruskal’s tree theorem

+ Kuratowski’s planar graphs theorem (weak form)
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ALGORITHMIC RESULTS

Theorem (Seymour-Robertson)

Fix G. The algorithmic problem: given H is G < H is in TIME(O(|H[*)).

Consequences
« Every problem downwards closed under minors is in O(n?)
« Checking planarity is in O(#?)
« For every k, checking if Entanglement G = k is in O(#°)
(For undirected graphs G)



OVERVIEW

Termination Analysis



FrRoOM TERM TO GRAPH REWRITING

Setof rules | — r

Operation
o Find lo
+ Remove it
o Insert ro
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FrRoOM TERM TO GRAPH REWRITING

Set of rules [ — 7

X Y X Z

Operation
« Find a tree isomorphic to / without variables
* Remove it
« Insert r and reconnect
Notes:
+ Observe edge labels denoting both symbol and arity
+ Defined only for left-linear (perhaps better this way)
« Tight correspondence only for right-linear (graphs: constant memory)
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HYPERGRAPH REWRITING

Rule
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HYPERGRAPH REWRITING

Rule
X /Z g Y VA \4
S/ .
Y 14
Application

OOKO

Note: e.g. Y matched all black successors (position 1 in black hyperedge)
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TERM REWRITING TERMINATION OVERVIEW

Embedding and Simplification Orders

o Let t <emp s if the corresponding graphs f < § (topological embedding)

+ An ordering < is a simplification order if it contains <.}, and is
well-behaved under contexts and substitutions

+ Kruskal’s tree theorem: simplification orders are well-quasi-orders

+ <isasimplification order and r < [ for each rule ~ the system terminates
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TERM REWRITING TERMINATION OVERVIEW

Embedding and Simplification Orders

o Let t <emp s if the corresponding graphs f < § (topological embedding)

+ An ordering < is a simplification order if it contains <.}, and is
well-behaved under contexts and substitutions

+ Kruskal’s tree theorem: simplification orders are well-quasi-orders

+ <isasimplification order and r < [ for each rule ~ the system terminates
Classical simplification orders

« Path orderings: LPO, RPO, RPOS (with status)
+ Knuth-Bendix ordering

+ Polynomial orders

Problem
f(f(x)) = f(g(f(x)))

Help: dependency pairs, abstraction
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HYPERGRAPH REWRITING TERMINATION?

The basis given by Graph Minor Theorem!
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HYPERGRAPH REWRITING TERMINATION?

The basis given by Graph Minor Theorem!

Problems

+ Not clear whether r < [ is enough
» But there are some sufficient conditions

« Assume that the collapse sets of variables are singletons
« More abstract conditions by Barbara Konig (2008, single pushout)

+ Does changing directions or labels spoil anything?
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HYPERGRAPH REWRITING TERMINATION?

The basis given by Graph Minor Theorem!

Problems

+ Not clear whether r < [ is enough
» But there are some sufficient conditions

« Assume that the collapse sets of variables are singletons
« More abstract conditions by Barbara Konig (2008, single pushout)

+ Does changing directions or labels spoil anything?
Possible Work

+ Clarify at least some of the problems above

« Is there something similar to simplification orders?

« Are there notions analogous to LPO, RPO?

+ Can other approaches be used?

12/27



OVERVIEW

Graphs of Bounded Clique-Width



LET’s BUILD A GRAPH

Pieces to build a graph:
+ Bags of single nodes with different colors1...K
« Paint to change color of all nodes from i to j

« Edges to connect all nodes of color i to all of color j

Example:
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LET’s BUILD A GRAPH

Pieces to build a graph:
+ Bags of single nodes with different colors1...K
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Example:
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LET’s BUILD A GRAPH
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LET’s BUILD A GRAPH

Pieces to build a graph:
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LET’s BUILD A GRAPH

Pieces to build a graph:
+ Bags of single nodes with different colors1...K
« Paint to change color of all nodes from i to j

« Edges to connect all nodes of color i to all of color j

Example:
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INTERPRETING A GRAPH IN A TREE

Description of how to build G is a tree 7 (G):
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INTERPRETING A GRAPH IN A TREE

Description of how to build G is a tree 7 (G):
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INTERPRETING A GRAPH IN A TREE

Description of how to build G is a tree 7 (G):

e — 0 — e / N

Theorem:
For every K there is an MSO-to-MSO interpretation Z such that
for all graphs G of clique-width < K holds

I(T(9) =6

5/27



BOUNDED CLIQUE-WIDTH GRAPHS

Corollary:
For every K and ¢ € MSO(Graphs) there exists y € MSO(Tree) such that

Clique-Width(K) £ ¢ <= Binary Tree = v
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BOUNDED CLIQUE-WIDTH GRAPHS

Corollary:
For every K and ¢ € MSO(Graphs) there exists y € MSO(Tree) such that

Clique-Width(K) £ ¢ <= Binary Tree = v

Examples:

« singly or doubly-linked lists, with back-links
o nested lists (lists of lists), trees

« all graphs of bounded tree-width
« cliques, full bipartite graphs

Characterizations:

+ All families of graphs uniformly MSO-interpretable in the binary tree.
+ Configurations of pushdown automata (mod e-transitions)
+ Graphs obtained by simple rewriting (later)

Applications: e.g. verification of heap-manipulating programs
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OVERVIEW

Simple Hypergraph Rewriting Games



SiMPLE HYPERGRAPH REWRITING

Simple Tree Rewriting (ground and left-hand side is a constant)
List — cons(o, List)

Note: simple due to deep connection to automata and decidability results
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SiMPLE HYPERGRAPH REWRITING

Simple Tree Rewriting (ground and left-hand side is a constant)
List — cons(o, List)

Note: simple due to deep connection to automata and decidability results

Simple Hypergraph Rewriting (Courcelle, Engelfriet, Rozenberg, 1991)

0 1 0 1
L
X— X
X
Vo V1

Separated Hypergraphs: no vertex is incident to two non-terminal edges

Separated: o—X 0% 0% o
Not Separated: o—X o6 X 5
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GAMES PLAYED WITH HYPERGRAPHS

Definition

+ Fix a finite set of separated handle rewriting rules S
+ Game: directed graph

« vertices assigned to players

« edges labelled by rules from S

« Play: construction of a sequence of hypergraphs

Winning condition: defined in MSO over the limit hypergraph
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GAMES PLAYED WITH HYPERGRAPHS

Definition

+ Fix a finite set of separated handle rewriting rules S
+ Game: directed graph

« vertices assigned to players
« edges labelled by rules from S

« Play: construction of a sequence of hypergraphs
+ Winning condition: defined in MSO over the limit hypergraph
Rewriting Sequences and Limit Hypergraphs

« G[X — H]is G with all* occurrences of X rewritten to H

* Limitof Go ~> G1 > G3 — ...t (Unen Nizn Vi Unen Nizn Ei)
*Notes:

« Rewriting separated graphs is confluent

« If players pick positions: undecidable, see Active context-free games,
thanks to Anca Muscholl

19/27



ExAMPLE: PLAYING GOMOKU

s
i,i—@ ij—@
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ExAMPLE: CONSTRUCTING A LADDER

)
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ExAMPLE: CONSTRUCTING A LADDER
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RESULT ON GAMES

Theorem

+ Let S be a finite set of separated handle rewriting rules
+ and ¢ be an MSO formula (giving the winning condition)

Then the set {m € S : limG(n) & ¢} is w-regular.

Corollary

Establishing the winner of finite separated handle rewriting games is decidable.



RESULT ON GAMES

Theorem

+ Let S be a finite set of separated handle rewriting rules

+ and ¢ be an MSO formula (giving the winning condition)
Then the set {m € S : limG(n) & ¢} is w-regular.

Corollary
Establishing the winner of finite separated handle rewriting games is decidable.

Other Consequences

« Strategies only require finite memory
« Decidability and determinacy for concurrent stochastic arenas

+ In multiplayer games rational (iteratively weakly dominant) strategies
are computable



PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

!
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PROOF: SEPARATED GRAPH REWRITING AS A TREE

@ e(6,3)

(45) | (0.1 e(4,1)

e(4,7)
X @
[ e

6,7) 1 (2,3) (4,5) (6,7) X(0,1,2,3)

23/27



PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

(45 | (o1)

[

(6,7) 1 (2,3)
(4,5) (8,1) (8,8)

—

O———0O
O—0O
%C < C

e(6,3)
e(4,1)
e(4,7)
® ®
/ N\ \
(4,5) (6,7) ¢(7,3)
c(é,l)
c(+,8)
e(6,3)
6(4,1)
e(4,7)
e

@
/ N\

(4,5) (6,7) X(0,1,2,3)
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PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

(45 | (o1)

[

(6,7) 1 (2,3)

(45 6D @)
M)

[k
O O

(67) (3 68

MSO-to-MSO interpretation: ¢ — v

e(6,3)
e(4,1)
e(4,7)
ea/é
/ N\ \
(4,5) (6,7)  ¢(7,3)
c(é,l)
c(+,8)
e(6,3)
6(4,1)
e(4,7)
o

—

/69\
(4,5) (6,7) X(0,1,2,3)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

!
S —>f(X, Y)

X > g(X,Y)

Y- ¢(X,Y)
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T ()
S —>f(X, Y)

O
X > g(X,Y) X Y
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S —>f(X, Y)

O
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

¢ f>90
S—)f(X, Y)
® /
X—>g(X, Y) @
O
Y—>g(X, Y)

existential: pick transition frq0 ~ (q1,92)

universal: left or right
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

@®
Y - g(X, Y)

existential: pick transition

universal: left or right

f>90

%

f>q0 ~ (q1,92)

ignore
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

Q /540

S—f(X,Y)
O /

X - g(X,Y) @
O

Y > g(X,Y) K :

existential: pick transition

f>q0 ~ (q1,92)

universal: left or right ignore
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APPLICATION: PUSHDOWN PARITY GAMES
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APPLICATION: PUSHDOWN PARITY GAMES

o : @
o?
ql’ a EOP
Q\3
plI&b @
) 6
QQ
qO)l
2o,
S o : @
‘Qhéé o?
q2» b .goP
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APPLICATION: PUSHDOWN PARITY GAMES

?\)s‘ﬂ\ ¢ 43’ a

\\

9o
Pop,

q1, a
<z"“'\\
llsbé q4’ b
92, b

//
(T

qO)

\ss\\a 95,4

//\\

Pu% s

ge> b
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APPLICATION: PUSHDOWN PARITY GAMES

v“g“a 113, a

\\

9o
Pop,

q1,a
Q“é'\\
US[]é q4’ b
(12,

//
(T

qO)

“S\\a 615,61

//\\

Pugy, s

5I6,b

We can define the parity winning condition over states in MSO, or
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APPLICATION: PUSHDOWN PARITY GAMES

g“a 113,01

\\

?0‘?

q1,a
<z"“'\\
PUS]] s q4’ b
112,

//
(T

qO)

?\ss“‘ ¢ 615’ a

//\\

Pugy, s

CI6,b

We can define the parity winning condition over states in MSO, or

PLAY A GAME ON THE RESULTING GRAPH
(Higher-order Hypergraph Rewriting Games)
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APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R
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APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game

§0 — :(“'“)()50 (a,a) 50

e ORI ey
O E > 00

§ | o

o — (h,u)oso

R — )
* = Qs
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APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game

(a,a) 50 (a,a)

s — 00 {b-e)

$ — OO0 s = OO0
s0 — O(—b>O

a,5)”8° 0 — s¢ —

(a, )"
(b,a) 50

¢ — O—0

R — )
* = Qs

(b,6)°
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APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game

o — (u,a)()so

s —[——=()
¢ = (u,b)os"

.

o — (b,u)oso

R — )
* = Qs

Constructed game
(a:a) (b, a)

$ — OO0 s = OO0

s — I

(a, )" (b,6)°

Constructed hypergraph

26/27



APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game

o — (u,a)()so

s —[——=()
¢ = (u,b)os"

.

o — (b,u)oso

R — )
* = Qs

Constructed game
) (bra) g0

¢ — OO0 e — OO

s — I

(a, )" (b,6)°
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( : (a, b) @
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APPLICATION OF HIGHER-ORDER GAMES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game
(a.a) g0 (a:a) o (bra) 0
¢ — O0—0 0 S 0 s
e O B i
¢ — O—0 0
(ab)’S = Qe 8 = Qe
§ Constructed hypergraph
o — (b,u)oso

s [ () O @n N ) Q

s — O—0 NG

(b, 5)”S°
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SUMMARY

Hypergraph Rewriting Games are Fun!

Definition Problems

« Hypergraph rewriting without pushouts?
+ Can we really use variables?

+ Why all non-terminals are separated? What if only corresponding ones?

Existing Tools

+ Minor ordering which is a well-quasi-order
+ Vertex replacement construction

+ MSO-to-MSO interpretations and automata

Standard w-regular games
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