Analysis of Hypergraph Rewriting Systems

Łukasz Kaiser

Mathematische Grundlagen der Informatik RWTH Aachen

Wrocław, 2008

MOTIVATION

Intuitive Models of the World

- Intuitive is important, as coding is costly and error-prone
- Hypergraphs are a general model of discrete structures
 - studied in software engineering and design for a long time
- Games are a natural model of interaction
 - Rewriting can be used as actions of players

MOTIVATION

Intuitive Models of the World

- Intuitive is important, as coding is costly and error-prone
- Hypergraphs are a general model of discrete structures
 - studied in software engineering and design for a long time
- Games are a natural model of interaction
 - Rewriting can be used as actions of players

Methods for Analysis of Systems

- Theorem proving, Abstraction (very general, needs guidance)
- Termination analysis (guessing induction order) (general)
- Regularity and Automata (specific, basis for type systems)

OVERVIEW

Graph Minors

Termination Analysis

Graphs of Bounded Clique-Width

Simple Hypergraph Rewriting Games

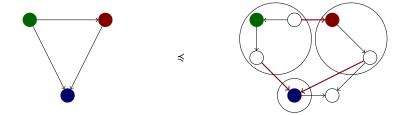
Definition of Graph Minors

$G \leq H$ if G can be obtained from H by

- removing edges
- contracting edges
- deleting singular vertices

Definition of Directed Hypergraph Minors

- $G \leq H$ if there is a collapse of H to G
 - map vertices of G to connected graphs of vertices of H
 - different vertices of G mapped to disjoint sets in H
 - any two connected vertices in the result incident to a hyperedge of H
 - find hyperedges of G as hyperedges of H
 - connect on the *i*th position of the edge some vertex in the *i*th set
 - strong: use other hyperedges than the ones for incidence above



WAGNER CONJECTURE

Theorem (Seymour-Robertson; Graphs: 2004, Hypergraphs: to appear)

Minor ordering is a well-quasi-order: in every infinite sequence $G_0, G_1, ...$ of finite graphs there exist i < j such that $G_i \leq G_j$.

Corollary

Every upwards closed set has a finite basis. Every downwards closed set admits a finite obstruction set.

Consequences

- Kruskal's tree theorem
- Kuratowski's planar graphs theorem (weak form)

ALGORITHMIC RESULTS

Theorem (Seymour-Robertson)

Fix G. The algorithmic problem: given H is $G \leq H$ is in TIME $(O(|H|^3))$.

Consequences

- Every problem downwards closed under minors is in $O(n^3)$
- Checking planarity is in $O(n^3)$
- For every k, checking if Entanglement G = k is in O(n³) (For undirected graphs G)

OVERVIEW

Graph Minors

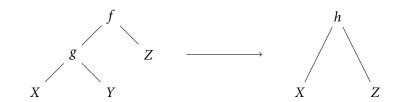
Termination Analysis

Graphs of Bounded Clique-Width

Simple Hypergraph Rewriting Games

FROM TERM TO GRAPH REWRITING

Set of rules $l \rightarrow r$



Operation

- Find *lσ*
- Remove it
- Insert *rσ*

FROM TERM TO GRAPH REWRITING

Set of rules $\hat{l} \rightarrow \hat{r}$

Operation

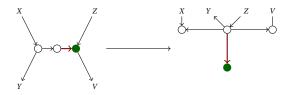
- Find a tree isomorphic to *l* without variables
- Remove it
- Insert *r* and reconnect

Notes:

- Observe edge labels denoting both symbol and arity
- Defined only for left-linear (perhaps better this way)
- Tight correspondence only for right-linear (graphs: constant memory)

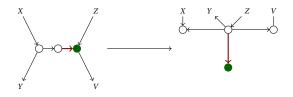
Hypergraph Rewriting

Rule

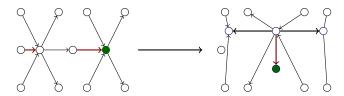


Hypergraph Rewriting

Rule



Application



Note: e.g. Y matched all black successors (position 1 in black hyperedge)

TERM REWRITING TERMINATION OVERVIEW

Embedding and Simplification Orders

- Let $t <_{emb} s$ if the corresponding graphs $\hat{t} \leq \hat{s}$ (topological embedding)
- An ordering < is a simplification order if it contains <_{emb} and is well-behaved under contexts and substitutions
- Kruskal's tree theorem: simplification orders are well-quasi-orders
- < is a simplification order and r < l for each rule \sim the system terminates

TERM REWRITING TERMINATION OVERVIEW

Embedding and Simplification Orders

- Let $t <_{emb} s$ if the corresponding graphs $\hat{t} \leq \hat{s}$ (topological embedding)
- An ordering < is a simplification order if it contains <_{emb} and is well-behaved under contexts and substitutions
- Kruskal's tree theorem: simplification orders are well-quasi-orders
- < is a simplification order and r < l for each rule \sim the system terminates

Classical simplification orders

- Path orderings: LPO, RPO, RPOS (with status)
- Knuth-Bendix ordering
- Polynomial orders

TERM REWRITING TERMINATION OVERVIEW

Embedding and Simplification Orders

- Let $t <_{\text{emb}} s$ if the corresponding graphs $\hat{t} \leq \hat{s}$ (topological embedding)
- An ordering < is a simplification order if it contains <_{emb} and is well-behaved under contexts and substitutions
- Kruskal's tree theorem: simplification orders are well-quasi-orders
- < is a simplification order and r < l for each rule \sim the system terminates

Classical simplification orders

- Path orderings: LPO, RPO, RPOS (with status)
- Knuth-Bendix ordering
- Polynomial orders

Problem

$$f(f(x)) \to f(g(f(x)))$$

Help: dependency pairs, abstraction

Hypergraph Rewriting Termination?

The basis given by Graph Minor Theorem!

Hypergraph Rewriting Termination?

The basis given by Graph Minor Theorem!

Problems

- Not clear whether $r \leq l$ is enough
- But there are some sufficient conditions
 - · Assume that the collapse sets of variables are singletons
 - More abstract conditions by Barbara König (2008, single pushout)
- Does changing directions or labels spoil anything?

Hypergraph Rewriting Termination?

The basis given by Graph Minor Theorem!

Problems

- Not clear whether $r \leq l$ is enough
- But there are some sufficient conditions
 - Assume that the collapse sets of variables are singletons
 - More abstract conditions by Barbara König (2008, single pushout)
- Does changing directions or labels spoil anything?

Possible Work

- Clarify at least some of the problems above
- Is there something similar to simplification orders?
- Are there notions analogous to LPO, RPO?
- Can other approaches be used?

OVERVIEW

Graph Minors

Termination Analysis

Graphs of Bounded Clique-Width

Simple Hypergraph Rewriting Games

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color i to all of color j

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color i to all of color j

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color i to all of color j

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color i to all of color j

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color i to all of color j

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Pieces to build a graph:

- Bags of single nodes with different colors 1...K
- Paint to change color of all nodes from *i* to *j*
- Edges to connect all nodes of color *i* to all of color *j*

Interpreting a Graph in a Tree

Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:

Interpreting a Graph in a Tree

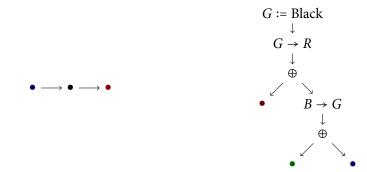
Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:

INTERPRETING A GRAPH IN A TREE

Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:



Description of how to build \mathcal{G} is a tree $\mathcal{T}(\mathcal{G})$:



Theorem:

For every *K* there is an MSO-to-MSO interpretation \mathcal{I} such that for all graphs \mathcal{G} of clique-width $\leq K$ holds

 $\mathcal{I}(\mathcal{T}(\mathcal{G}))\cong \mathcal{G}$

Corollary:

For every *K* and $\varphi \in MSO(Graphs)$ there exists $\psi \in MSO(Tree)$ such that

 $\mathbf{Clique-Width}(K) \vDash \varphi \iff \mathbf{Binary Tree} \vDash \psi$

Corollary:

For every *K* and $\varphi \in MSO(Graphs)$ there exists $\psi \in MSO(Tree)$ such that

 $\mathbf{Clique-Width}(K) \vDash \varphi \iff \mathbf{Binary Tree} \vDash \psi$

Examples:

- singly or doubly-linked lists, with back-links
- nested lists (lists of lists), trees
- all graphs of bounded tree-width
- cliques, full bipartite graphs

Corollary:

For every *K* and $\varphi \in MSO(Graphs)$ there exists $\psi \in MSO(Tree)$ such that

Clique-Width(*K*) $\vDash \varphi \iff$ **Binary Tree** $\vDash \psi$

Examples:

- singly or doubly-linked lists, with back-links
- nested lists (lists of lists), trees
- all graphs of bounded tree-width
- cliques, full bipartite graphs

Characterizations:

- All families of graphs uniformly MSO-interpretable in the binary tree.
- Configurations of **pushdown automata** (mod ε-transitions)
- Graphs obtained by simple rewriting (later)

Corollary:

For every *K* and $\varphi \in MSO(Graphs)$ there exists $\psi \in MSO(Tree)$ such that

 $\mathbf{Clique-Width}(K) \vDash \varphi \iff \mathbf{Binary Tree} \vDash \psi$

Examples:

- singly or doubly-linked lists, with back-links
- nested lists (lists of lists), trees
- all graphs of bounded tree-width
- cliques, full bipartite graphs

Characterizations:

- All families of graphs uniformly MSO-interpretable in the binary tree.
- Configurations of **pushdown automata** (mod ε-transitions)
- Graphs obtained by simple rewriting (later)

Applications: e.g. verification of heap-manipulating programs

OVERVIEW

Graph Minors

Termination Analysis

Graphs of Bounded Clique-Width

Simple Hypergraph Rewriting Games

SIMPLE HYPERGRAPH REWRITING

Simple Tree Rewriting (ground and left-hand side is a constant)

 $List \rightarrow cons(o, List)$

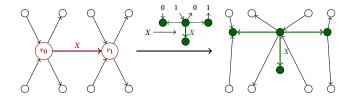
Note: simple due to deep connection to automata and decidability results

SIMPLE HYPERGRAPH REWRITING

Simple Tree Rewriting (ground and left-hand side is a constant)

 $List \rightarrow cons(o, List)$

Note: simple due to deep connection to automata and decidability results Simple Hypergraph Rewriting (Courcelle, Engelfriet, Rozenberg, 1991)

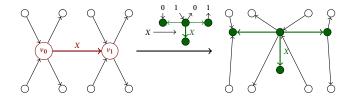


SIMPLE HYPERGRAPH REWRITING

Simple Tree Rewriting (ground and left-hand side is a constant)

 $List \rightarrow cons(o, List)$

Note: simple due to deep connection to automata and decidability results Simple Hypergraph Rewriting (Courcelle, Engelfriet, Rozenberg, 1991)



Separated Hypergraphs: no vertex is incident to two non-terminal edges Separated: $\xrightarrow{x} \xrightarrow{a} \xrightarrow{x} \xrightarrow{x}$ Not Separated: $\xrightarrow{x} \xrightarrow{x} \xrightarrow{x} \xrightarrow{x}$

GAMES PLAYED WITH HYPERGRAPHS

Definition

- Fix a finite set of separated handle rewriting rules $\mathbb S$
- Game: directed graph
 - vertices assigned to players
 - edges labelled by rules from $\mathbb S$
- Play: construction of a sequence of hypergraphs
- Winning condition: defined in MSO over the limit hypergraph

GAMES PLAYED WITH HYPERGRAPHS

Definition

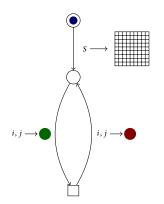
- Fix a finite set of separated handle rewriting rules $\mathbb S$
- Game: directed graph
 - vertices assigned to players
 - edges labelled by rules from $\mathbb S$
- Play: construction of a sequence of hypergraphs
- Winning condition: defined in MSO over the limit hypergraph

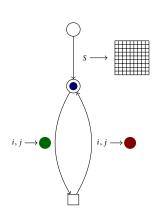
Rewriting Sequences and Limit Hypergraphs

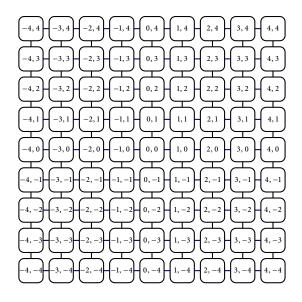
- $G[X \rightarrow H]$ is G with all^{*} occurrences of X rewritten to H
- Limit of $G_0 \to G_1 \to G_3 \to \ldots : (\bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} V_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} E_i)$

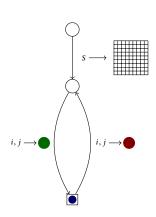
*Notes:

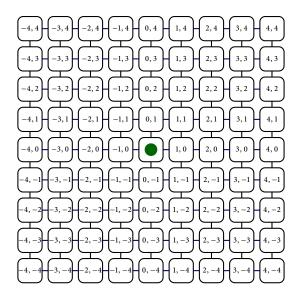
- Rewriting separated graphs is confluent
- If players **pick** positions: **undecidable**, see Active context-free games, thanks to Anca Muscholl

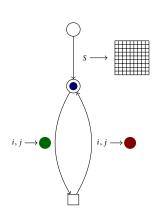


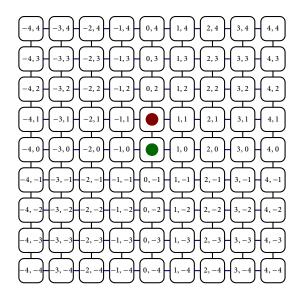


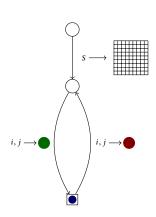




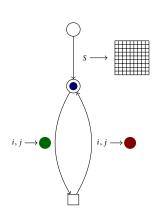


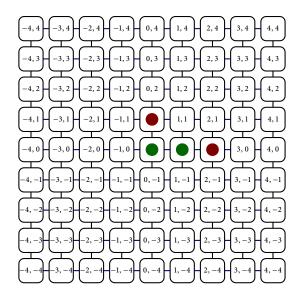




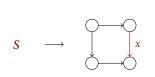


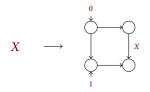


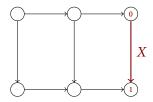


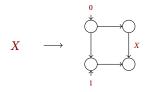


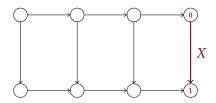
S

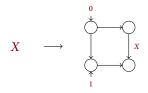


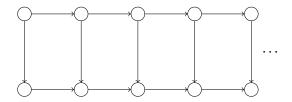












Result on Games

Theorem

- Let $\mathbb S$ be a finite set of separated handle rewriting rules
- and φ be an MSO formula (giving the winning condition)

Then the set $\{\pi \in \mathbb{S}^{\omega} : \lim G(\pi) \vDash \varphi\}$ *is* ω *-regular.*

Corollary

Establishing the winner of finite separated handle rewriting games is decidable.

Result on Games

Theorem

- Let $\mathbb S$ be a finite set of separated handle rewriting rules
- and φ be an MSO formula (giving the winning condition)

Then the set $\{\pi \in \mathbb{S}^{\omega} : \lim G(\pi) \vDash \varphi\}$ is ω -regular.

Corollary

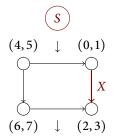
Establishing the winner of finite separated handle rewriting games is decidable.

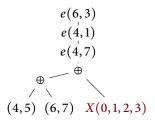
Other Consequences

- Strategies only require finite memory
- Decidability and determinacy for concurrent stochastic arenas
- In multiplayer games rational (iteratively weakly dominant) strategies are computable

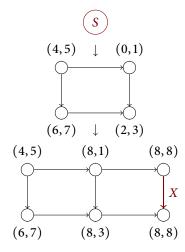
Proof: Separated Graph Rewriting as a Tree

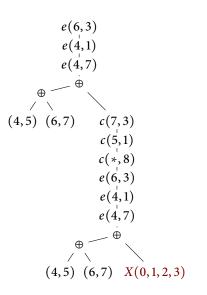
Proof: Separated Graph Rewriting as a Tree



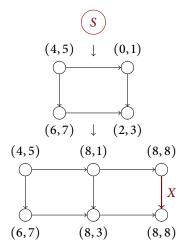


Proof: Separated Graph Rewriting as a Tree

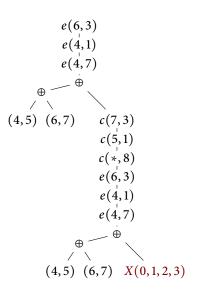




PROOF: SEPARATED GRAPH REWRITING AS A TREE



MSO-to-MSO interpretation: $\varphi \rightarrow \psi$



$$(S, q_0)$$

$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

existential: pick transition

$$S \to f(X, Y)$$

$$X \to g(X, Y)$$

$$Y \to g(X, Y)$$

existential: pick transition

 $f, q_0 \rightarrow (q_1, q_2)$

Proof: From Tree to Alternating Word Automata

$$\bigcirc S \to f(X, Y)$$

$$\bigcirc X \to g(X, Y)$$

$$\bigcirc Y \to g(X, Y)$$

$$\vdots$$

existential: pick transition

$$f, q_0 \rightarrow (q_1, q_2)$$

universal: left or right

Proof: From Tree to Alternating Word Automata

$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$X \qquad X \qquad Y, q_2$$

existential: pick transition

$$f, q_0 \rightarrow (q_1, q_2)$$

universal: left or right

Proof: From Tree to Alternating Word Automata

$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

existential: pick transition

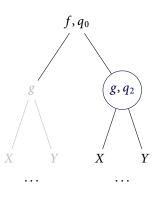
universal: left or right

 $f,q_0 \to (q_1,q_2)$

ignore

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

$$\bigcirc S \to f(X, Y)$$
$$\bigcirc X \to g(X, Y)$$
$$\bigcirc Y \to g(X, Y)$$
$$\vdots$$

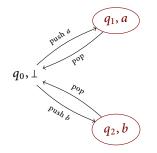


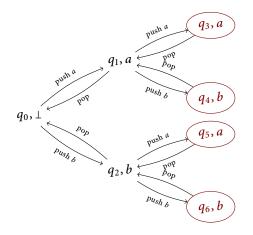
existential: pick transition

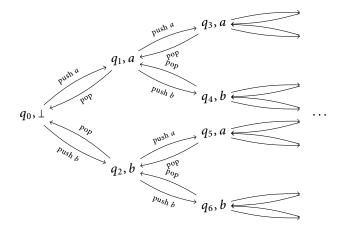
universal: left or right

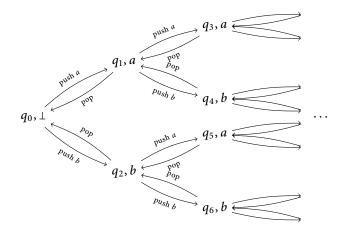
 $f,q_0 \to (q_1,q_2)$

 (q_0, \bot)

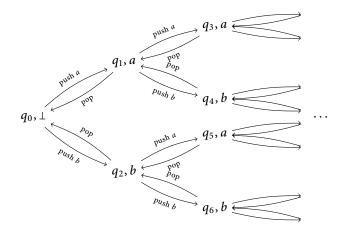








We can define the parity winning condition over states in MSO, or



We can define the parity winning condition over states in MSO, or

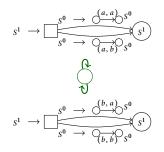
PLAY A GAME ON THE RESULTING GRAPH (Higher-order Hypergraph Rewriting Games)

Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R*

Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

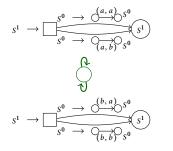


Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

 S^1

Higher-order game

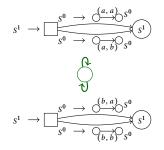
Constructed game

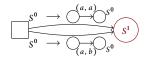


Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

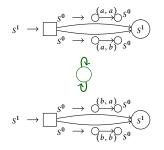


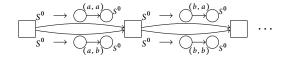


Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game



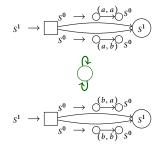


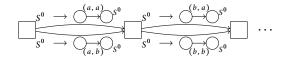
Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

S⁰

Higher-order game

Constructed game



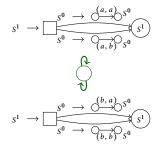


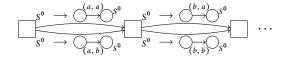
Constructed hypergraph

Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

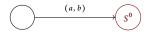
Higher-order game

Constructed game





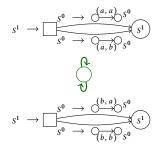
Constructed hypergraph

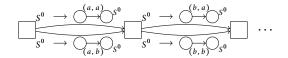


Problem: $\exists x \forall y R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing *R* Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

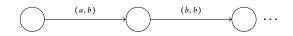
Higher-order game

Constructed game





Constructed hypergraph



SUMMARY

Hypergraph Rewriting Games are Fun!

Definition Problems

- Hypergraph rewriting without pushouts?
- Can we really use variables?
- Why all non-terminals are separated? What if only corresponding ones?

Existing Tools

- Minor ordering which is a well-quasi-order
- Vertex replacement construction
- MSO-to-MSO interpretations and automata
- Standard *ω*-regular games

SUMMARY

Hypergraph Rewriting Games are Fun!

Definition Problems

- Hypergraph rewriting without pushouts?
- Can we really use variables?
- Why all non-terminals are separated? What if only corresponding ones?

Existing Tools

- Minor ordering which is a well-quasi-order
- Vertex replacement construction
- MSO-to-MSO interpretations and automata
- Standard *ω*-regular games

Thank You