Łukasz Kaiser

Mathematische Grundlagen der Informatik RWTH Aachen

Games 2008, Warsaw

How People Play Games

Gomoku (five in a row)

How People Play Games

Gomoku (five in a row)

Parity game

How People Play Games

Gomoku (five in a row)

Parity game

When state space is infinite, we often (again) consider its structure

- to construct algorithms
- to prove interesting properties

Example: pushdown games

A NATURAL GAME PRESENTATION

Gomoku Rules

Gomoku Board

- 9×9 board
- Player 0 puts
- Player 1 puts
- Players alternate

A NATURAL GAME PRESENTATION

Representing the Rules and the Gomoku Board

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Separated Hypergraphs: no vertex is incident to two non-terminal edges

Separated:

Not Separated:

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Separated Hypergraphs: no vertex is incident to two non-terminal edges

Separated: Not Separated:

Rewriting Sequences and Limit Hypergraphs

- $G[X \to H]$ is G with all* occurrences of X rewritten to H
 - * if players pick positions: undecidable, see Active context-free games, thanks to Anca Muscholl
- Limit of $G_0 \to G_1 \to G_3 \to \dots : (\bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} V_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} E_i)$

MAIN RESULT

Theorem

- Let S be a finite set of separated handle rewriting rules
- and φ be an MSO formula (giving the winning condition)

Then the set $\{\pi \in S^{\omega} : \lim G(\pi) \models \varphi\}$ is ω -regular.

Corollary

Establishing the winner of finite separated handle rewriting games is decidable.

Ċ

existential: pick transition

existential: pick transition

$$f, q_0 \rightarrow (q_1, q_2)$$

existential: pick transition

 $f,q_0 \rightarrow (q_1,q_2)$

universal: left or right

existential: pick transition

 $f,q_0\to (q_1,q_2)$

universal: left or right

existential: pick transition

universal: left or right

$$f,q_0\to (q_1,q_2)$$

ignore

existential: pick transition

universal: left or right

$$f, q_0 \rightarrow (q_1, q_2)$$

ignore

We can define the parity winning condition over states in MSO, or

We can define the parity winning condition over states in MSO, or

PLAY A GAME ON THE RESULTING GRAPH

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Constructed hypergraph

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Constructed hypergraph

Problem: $\exists x \ \forall y \ R(x, y)$ with an automaton (\rightsquigarrow MSO formula) recognizing R Solution: build the word $x_0 \otimes y_0$, the Verifier picks x_0 , the Falsifier y_0 .

Higher-order game

Constructed game

Constructed hypergraph

SUMMARY

Nice properties of separated handle rewriting games

- Reduce to ω -regular games for MSO winning conditions
- Establishing the winner is decidable
- Generate known classes of graphs, simulate pushdown games
- Playing repeatedly, e.g. for model checking on automatic structures
- Many ways to generalize these games

SUMMARY

Nice properties of separated handle rewriting games

- Reduce to ω -regular games for MSO winning conditions
- Establishing the winner is decidable
- Generate known classes of graphs, simulate pushdown games
- Playing repeatedly, e.g. for model checking on automatic structures
- Many ways to generalize these games

Questions

- (1) What if players pick multiple options for non-terminal symbols?
- (2) How about constructing stochastic games?
- (3) Which rewriting corresponds to asynchronous product*?
 - * which leads to graphs with decidable FO[R] (T. Colcombet), thanks to C. Löding for asking

SUMMARY

Nice properties of separated handle rewriting games

- Reduce to ω -regular games for MSO winning conditions
- Establishing the winner is decidable
- Generate known classes of graphs, simulate pushdown games
- Playing repeatedly, e.g. for model checking on automatic structures
- Many ways to generalize these games

Questions

- (1) What if players pick multiple options for non-terminal symbols?
- (2) How about constructing stochastic games?
- (3) Which rewriting corresponds to asynchronous product*?
 - * which leads to graphs with decidable FO[R] (T. Colcombet), thanks to C. Löding for asking

Thank You