GAMES PLAYED WITH HYPERGRAPHS

Yukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

Games 2008, Warsaw

1/12

How PEOPLE PLAY GAMES

Gomoku (five in a row)

/12

How PEOPLE PLAY GAMES

Gomoku (five in a row)

Parity game

/12

How PEOPLE PLAY GAMES

Gomoku (five in a row) Parity game

(o) (1]

When state space is infinite, we often (again) consider its structure

« to construct algorithms
« to prove interesting properties
Example: pushdown games

2/12

A NATURAL GAME PRESENTATION

Gomoku Rules Gomoku Board

e 9 x9board

Player 0 puts @

Player 1 puts @

Players alternate

A NATURAL GAME PRESENTATION

Representing the Rules and the Gomoku Board

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

4/12

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

(0,0) (1,0) (3,1)

X— X
X z(mﬂ)

4/12

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Sequence of k ports for each k-ary labeled edge
(0,0) (1,0) (B,1)

X— X
X z(mﬂ)

4/12

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Sequence of k ports for each k-ary labeled edge

(0 D) (1,0) (o,1)
(D o)
o
O O

4/12

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Sequence of k ports for each k-ary labeled edge
(0,0) (1,0) (B,1)

X— X
X z(mﬂ)

©) @)

Separated Hypergraphs: no vertex is incident to two non-terminal edges

Separated: o—* o2 0% 5
Not Separated: o—X o X 5

4/12

GAMES PLAYED WITH HYPERGRAPHS

Handle Rewrite Rules (Courcelle, Engelfriet, Rozenberg, 1991)

Sequence of k ports for each k-ary labeled edge

(0 D) (1,0) (o,1)
(D o)
o
O O

Separated Hypergraphs: no vertex is incident to two non-terminal edges

Separated: o—* o2 0% 5
Not Separated: o—X o X 5

Rewriting Sequences and Limit Hypergraphs
« G[X — H]is G with all* occurrences of X rewritten to H

* if players pick positions: undecidable, see Active context-free games, thanks to Anca Muscholl

e Limit OfGo -G >G3—> ... (UneN ﬁiz” Vi, Unen ﬂiZn E,’)

4/12

ExAMPLE: PLAYING GOMOKU

s
i,i—@ ij—@

5/12

ExAMPLE: PLAYING GOMOKU

++++++

ExAMPLE: PLAYING GOMOKU

++++++

ExAMPLE: PLAYING GOMOKU

++++++

ExAMPLE: PLAYING GOMOKU

++++++

ExAMPLE: PLAYING GOMOKU

++++++

ExAMPLE: CONSTRUCTING A LADDER

)

6/12

ExAMPLE: CONSTRUCTING A LADDER

6/12

ExAMPLE: CONSTRUCTING A LADDER

[
O O

(0,0)

x Hi:z

(1,0)

6/12

ExAMPLE: CONSTRUCTING A LADDER

O O O

(0,0)

x Hi:z

(1,0)

6/12

ExAMPLE: CONSTRUCTING A LADDER

O——O
O—O
O—0

6/12

MAIN RESULT

Theorem

o Let S be a finite set of separated handle rewriting rules

+ and ¢ be an MSO formula (giving the winning condition)
Then the set {m € S® : lim G(7) & ¢} is w-regular.

Corollary

Establishing the winner of finite separated handle rewriting games is decidable.

7/12

PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

!

8/12

PROOF: SEPARATED GRAPH REWRITING AS A TREE

@ e(6,3)

(45) | (0.1 e(4,1)

e(4,7)
X @
[e

6,7) 1 (2,3) (4,5) (6,7) X(0,1,2,3)

PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

(45 | (o1)

[

(6,7) 1 (2,3)
(4,5) (8,1) (8,8)

—

O———0O
O—0O
%C < C

e(6,3)
e(4,1)
e(4,7)
® ®
/ N\ \
(4,5) (6,7) ¢(7,3)
c(é,l)
c(+,8)
e(6,3)
e(zi,l)
e(4,7)
e

@
/ N\

(4,5) (6,7) X(0,1,2,3)

PROOF: SEPARATED GRAPH REWRITING AS A TREE

O,

(45 | (o1)

[

(6,7) 1 (2,3)

45 6D @8
M)

[k
O O

67) (3 68

MSO-to-MSO interpretation: ¢ — v

e(6,3)
e(4,1)
e(4,7)
ea/é
/ N\ \
(4,5) (6,7) ¢(7,3)
c(é,l)
c(+,8)
e(6,3)
e(zi,l)
e(4,7)
o

—

/69\
(4,5) (6,7) X(0,1,2,3)

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

@
S —>f(X, Y)

X > g(X,Y)

Y- g(X,Y)

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X > g(X,Y) X Y

Y- g(X,Y)

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X > g(X,Y) X Y

Y- g(X,Y)

existential: pick transition

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X->g(X,Y) X, q Y,q

Y- g(X,Y)

existential: pick transition frq0 ~ (q1,92)

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X->g(X,Y) X, q Y,q

Y- g(X,Y)

existential: pick transition frq0 ~ (q1,92)

universal: left or right

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

¢ f>90
S—)f(X, Y)
® /
X—>g(X, Y) @
O
Y—>g(X, Y)

existential: pick transition frq0 ~ (q1,92)

universal: left or right

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

@®
Y - g(X, Y)

existential: pick transition

universal: left or right

f>90

%

f>q0 ~ (q1,92)

ignore

9/12

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

Q /540

S—f(X,Y)
O /

X - g(X,Y) @
O

Y > g(X,Y) K :

existential: pick transition

f>q0 ~ (q1,92)

universal: left or right ignore

9/12

APPLICATION: PUSHDOWN PARITY GAMES

10/12

APPLICATION: PUSHDOWN PARITY GAMES

10/12

APPLICATION: PUSHDOWN PARITY GAMES

o :
o0
g1, 4 Pop,
ot
N
plISA @
Q 4
©
o> L
)
2
ot @
pll% ¢ o
v
(Jz, b Pop,
Pugy, 4

10/12

APPLICATION: PUSHDOWN PARITY GAMES

e qs,a

\

9o
Pop,

g1, 4
o§\a
/ pusllé q4) b
QZ,

//
hAN D

qo> L

\)5\\“ 95> 4

X

//\\

llsb 5

96> b

10/12

APPLICATION: PUSHDOWN PARITY GAMES

S\\a q3>a

)

p°?
Pop,

q1,a
&
/ pusllé q4) b
QZ,

//
hAN D

qo> 1

“5\\11 qS)a

X

//\\

llsb 5

qe>b

We can define the parity winning condition over states in MSO, or

10/12

APPLICATION: PUSHDOWN PARITY GAMES

“5\\& q3>a

)

9o
Pop,

q1,a
&
/ Plls]lé Q4> b
QZ,

//
hAN D

qo> 1
qs,a

X

s\‘ o
Qo?

//\\

llsb 5

qe>b

We can define the parity winning condition over states in MSO, or

PLAY A GAME ON THE RESULTING GRAPH

10/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game

o — (u,a)()so

s = —=()
¢ = (u,b)os"

.

o — (h,u)oso

S —)
* = QP

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game

o — (u,a)()so

OO
¢ — O(ﬁ)oso

.

o — (h,u)oso

S —)
* = QP

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game

§0 — :(“'“)()50 (a,a) 50

e ORI e
YT QP » > 00

§ | o
o — (h,u)oso

S —)
* = QP

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game
(0.0) o0 (@.a) 0 (bea) o
¢ — 00 0 O—OF 0 OO0
s e]
s — O—0. 0 0
(a,0)”$ s’ — 0 s — 0
§ (a, by—'S (b,
o (h,u)oso

S —)
* = QP

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game
(a,a) a,a b,a

g X %OS°§@ » = D" s — Q(JO;OD

¢ = :(u,b)oso 0 — o s¢ — 0
(a,0)7S (b,0)S
§ Constructed hypergraph

o — (b,u)oso

S —)
7 QP

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game

o — (u,a)()so

s = —=()
¢ = (u,b)os"

.

o — (b,u)oso

S —)
* = QP

Constructed game

o :(a)u):so o :(b’a):SOD

s — I
{b,)'8"

(a,)"

Constructed hypergraph

(: (a, b) @

11/12

APPLICATION: FO ON AUTOMATIC STRUCTURES

Problem: 3x Vy R(x, y) with an automaton (~ MSO formula) recognizing R

Solution: build the word x¢ ® y,, the Verifier picks x,, the Falsifier y.

Higher-order game Constructed game
(a.a) g0 (a:a) o (bra) 0
¢ — O0—0 0 S 0 s
ool) Rl e ey

s — O—0w 0 0
(a,b)"S s’ — 0 N 0
(a,b)—S (b,b)—'S

§ Constructed hypergraph

o — (b,u)oso

e) O @n N) Q
-

¢ — O—0 v

(b, 5)”S°

11/12

SUMMARY

Nice properties of separated handle rewriting games

+ Reduce to w-regular games for MSO winning conditions

Establishing the winner is decidable

Generate known classes of graphs, simulate pushdown games
« Playing repeatedly, e.g. for model checking on automatic structures

« Many ways to generalize these games

12/12

SUMMARY

Nice properties of separated handle rewriting games

+ Reduce to w-regular games for MSO winning conditions

Establishing the winner is decidable

Generate known classes of graphs, simulate pushdown games
« Playing repeatedly, e.g. for model checking on automatic structures

« Many ways to generalize these games

Questions

(1) What if players pick multiple options for non-terminal symbols?
(2) How about constructing stochastic games?

(3) Which rewriting corresponds to asynchronous product*?
* which leads to graphs with decidable FO[R] (T. Colcombet), thanks to C. Loding for asking

12/12

SUMMARY

Nice properties of separated handle rewriting games

+ Reduce to w-regular games for MSO winning conditions

Establishing the winner is decidable

Generate known classes of graphs, simulate pushdown games
« Playing repeatedly, e.g. for model checking on automatic structures

« Many ways to generalize these games

Questions

(1) What if players pick multiple options for non-terminal symbols?
(2) How about constructing stochastic games?

(3) Which rewriting corresponds to asynchronous product*?
* which leads to graphs with decidable FO[R] (T. Colcombet), thanks to C. Loding for asking

Thank You

12/12

