
Synthesis for Structure Rewriting Systems?

 Lukasz Kaiser

Mathematische Grundlagen der Informatik, RWTH Aachen, Germany
kaiser@logic.rwth-aachen.de

Abstract. The description of a single state of a modelled system is of-
ten complex in practice, but few procedures for synthesis address this
problem in depth. We study systems in which a state is described by
an arbitrary finite structure, and changes of the state are represented
by structure rewriting rules, a generalisation of term and graph rewrit-
ing. Both the environment and the controller are allowed to change the
structure in this way, and the question we ask is how a strategy for the
controller that ensures a given property can be synthesised.
We focus on one particular class of structure rewriting rules, namely
on separated structure rewriting, a limited syntactic class of rules. To
counter this restrictiveness, we allow the property to be ensured by the
controller to be specified in a very expressive logic: a combination of
monadic second-order logic evaluated on states and the modal µ-calculus
for the temporal evolution of the whole system. We show that for the
considered class of rules and this logic, it can be decided whether the
controller has a strategy ensuring a given property, and in such case a
finite-memory strategy can be synthesised. Additionally, we prove that
the same holds if the property is given by a monadic second-order formula
to be evaluated on the limit of the evolution of the system.

1 Introduction

Structure rewriting is a generalisation of graph rewriting and graph grammars,
which have been widely studied in computer science [1] and even used as a ba-
sis for software development environments.1 Since unrestricted graph rewriting
constitutes a programming language, most questions about unrestricted rewrit-
ing systems are necessarily undecidable. While the Graph Minor Theorem has
recently allowed a basic analysis of large classes of single-pushout graph transfor-
mation systems [3], to define structure rewriting for which the synthesis problem
remains decidable, it is necessary to strongly limit the allowed rewriting rules.

Choosing a restricted class of structure rewriting rules, we want to preserve
the original motivation of practical applicability. In the context of software veri-
fication, this means that we want to allow at least basic manipulations on graphs
that often appear as memory structures on the heap. One candidate for such a
class, used for example in the verification of Pointer Assertion Logic programs [4],

? This work was partially supported by the DFG Graduiertenkolleg 1298 AlgoSyn
1 It is interesting to note that the idea to rewrite relational structures was introduced

in 1973 by Rajlich [2] and it preceded most of the work on graph grammars.

are graphs of bounded clique-width. The class of rewriting rules that corresponds
to such graphs, separated handle hypergraph rewriting rules, was identified in
[5] in the context of hypergraph grammars.

We study the synthesis problem, which we view as a two-player zero-sum
game, in the course of which a structure is manipulated using similar separated
structure rewriting rules. We consider two possibilities to define the property to
be ensured, i.e. the winning condition in such games. One possibility is to use
a µ-calculus formula evaluated on the sequence of structures that constitutes a
play. In such a formula, instead of the usual predicates assigned to states, we
allow arbitrary monadic second-order formulas to be evaluated on the “current”
structure. The other possibility is to give a single monadic second-order formula
and evaluate it on the limit of all structures that appear during the play.

As our main result, we show that for the games described above it is de-
cidable which player has a winning strategy and that a winning strategy can
be constructed. In fact, we prove that conditions expressed by monadic second-
order formulas over the structures can be reduced to ω-regular conditions over
the game arena. Thus, we identify a class of structure rewriting games that have
the same nice properties as ω-regular games.

2 Preliminaries

For any set A we denote by A∗ and Aω the set of finite, and respectively infinite,
sequences of elements of A. Given a (finite or infinite) sequence α = a0a1 . . . we
write α[i] to denote the (i+ 1)st element of α, i.e. α[i] = ai.

A (relational) structure over a finite signature τ = {R1, . . . , Rn} (with Ri
having arity ri) is a tuple A = (A,RA

1 , . . . , R
A
n) where A is the universe of A and

each relation RA
i ⊆ Ari . We often write a ∈ A when a ∈ A is meant.

Given two structures A,B over the same signature τ we say that a function
f : A ↪→ B is an embedding if f is injective and for each Ri ∈ τ it holds that
(a1, . . . , ari) ∈ RA

i ⇐⇒ (f(a1), . . . , f(ari)) ∈ RB
i .

Given a sequence of structures A0A1 . . . we define the limit of this sequence
A∞ = limAi. The universe of A∞ consists of all elements that remain in all Ai
from some n on, A∞ =

⋃
n∈N

⋂
i≥nAi. The relations are defined similarly, i.e. a

tuple is in RA∞
k if for some n it is in all RAi

k for i > n, so RA∞
k =

⋃
n∈N

⋂
i≥nR

Ai

k .
There are many ways to describe properties of structures, and the most gen-

eral way that we use is monadic second-order logic, MSO. We omit the standard
formal definition of the semantics of MSO here, let us only mention the syntax.
Atomic formulas are built using first-order variables x0, x1, . . . and second-order
variables X0, X1, . . . in the expressions Ri(x1, . . . , xri) or x ∈ X. Formulas can
be negated, connected by disjunction and conjunction, and both first and second-
order quantification is allowed. So if ϕ and ψ are MSO formulas, then ϕ ∧ ψ,
ϕ∨ψ, ¬ϕ, ∃xϕ, ∀xϕ and ∃Xϕ, ∀Xϕ are MSO-formulas as well. We write A |= ϕ
if the formula ϕ is satisfied by the structure A.

A play of a structure rewriting game corresponds to a sequence of structures,
so to express properties of plays we not only need to express properties of struc-

tures, but also the ways they change through the sequence. One of the most
expressive logics used for such temporal properties, which subsumes for example
the linear time logic, is the modal µ-calculus, Lµ. We use an extension of Lµ
where arbitrary MSO formulas are allowed instead of predicates. The syntax of
Lµ[MSO] is given by

ϕ = ψMSO | Y | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | µY ϕ | νY ϕ,

where ψMSO is any MSO sentence. The semantics of Lµ[MSO], i.e. the notion
that a sequence of structures A0A1 . . . satisfies an Lµ[MSO] formula ϕ, is defined
analogously to the standard semantics of Lµ (cf. Chapter 10 of [6]), with the only
change that instead of using predicates we say that ψMSO holds at position i if
and only if it is satisfied by the structure Ai. We do not repeat the formal
semantics of Lµ[MSO] here, let us only mention the intuition, namely that ♦ϕ
holds in a sequence A0A1 . . . if ϕ holds from the next step on, i.e. in A1A2 . . .,
and that µY ϕ denotes the least fixed-point and νY ϕ the greatest fixed-point.

In addition to MSO and Lµ[MSO], we use the standard definitions of alter-
nating parity ω-word automata and non-deterministic parity ω-tree automata,
with the slight modification that our word automata have priorities on transi-
tions and not on states, and tree automata have final positions for the case that
some branch of the tree is finite.

3 Structure Rewriting Games

We will define two-player games in the course of which a structure is manipulated
by the players using separated structure rewriting rules, similar to the ones
presented in [5]. In this section we introduce such rules, the rewriting process
and the corresponding games.

3.1 Structure Rewriting Rules

Let us fix the signature τ and partition it into two disjoint subsets: the set τt of
terminal relation symbols and the set τn of non-terminal symbols. We say that
a structure A is separated if no element appears in two non-terminal relations,
i.e. if for all (a1, . . . , ark) ∈ RA

k , (b1, . . . , brl) ∈ RA
l with Rk, Rl ∈ τn it holds that

ai 6= bj for all i ≤ rk, j ≤ rl (except if k = l and a = b of course).
A structure rewriting rule L → R consists of a finite structure L over the

signature τ and a finite structure R over the extended signature τ ∪ {Pl}l∈L,
where each Pl is a unary predicate, i.e. PR

l ⊆ R, and we assume that PR
l are

pairwise disjoint (this assumption can be omitted, as we explain in Section 5).
A match of the rule L → R in another structure A is an embedding σ :

L ↪→ A, which induces the following mapping relation Mσ on R× A:

(r, a) ∈Mσ ⇐⇒ a = σ(l) and r ∈ PR
l for some l ∈ L.

Intuitively, we consider the elements of R that belong to PR
l as replacements for

l, and thus Mσ contains the pairs (r, a) for which a is to be replaced by r.

We define the result of an application of L → R to A on the match σ as a
structure B = A[L→ R/σ], such that the universe of B is given by (A\σ(L))∪̇R,
and the relations (writing bM I

σ for {a | (b, a) ∈M I
σ}) by (b1, . . . , bri) ∈ RB

i iff

(b1, . . . , bri) ∈ RR
i or some bj /∈ A and

(
b1M

I
σ × . . .× briM I

σ

)
∩ RA

i 6= ∅,

where M I
σ = Mσ ∪ {(a, a) | a ∈ A}. Intuitively, we remove L, insert R, and

connect all r ∈ PR
l in places where l was before in A, as given by σ.

A separated structure rewriting rule is a rewriting rule L → R where R
is separated and L consists of only one tuple of elements in a non-terminal
relation, i.e. there exists an Ri ∈ τn such that L = ({l1, . . . , lri}, RL

1 , . . . , R
L
n)

with RL
i = {(l1, . . . , lri)} and RL

j = ∅ for j 6= i. (Note that li = lj is possible.)
We denote the set of all separated rules over τ = τn ∪ τt by S(τ).

An example of a separated rewriting of a structure with one binary terminal
relation R0 (depicted as unlabelled edges) and one non-terminal binary relation
R1 is given in Figure 1.

a b
R1

a b
R1

Pa Pb Pb

Fig. 1. Rewriting the tuple (a, b) ∈ R1 in a structure.

Applications of a single separated rewriting rule to a separated structure are
confluent and yield again a separated structure (cf. [5]). Thus, if A is a finite
separated structure and L → R is a separated rule, we can define A[L → R],
the separated structure resulting from applying the rule to all tuples in RA

i in
any order (where Ri is the single non-empty relation in L). Note that if RA

i = ∅,
then A[L→ R] = A.

3.2 Games Played with Structures

Let α = r0r1 . . . be a sequence of separated rewriting rules, all belonging to a
finite set. For a non-terminal symbol Rk ∈ τn we define the Rk-starting structure
Sk as one with only one Rk-tuple, Sk = ({a1, . . . , ark}, R

Sk
1 , . . . , RSk

n) with

RSk

k = {(a1, . . . , ari)} and RSk
j = ∅ for j 6= k. Having a starting relation symbol

(and structure) and a sequence of rules, we can define the corresponding sequence
of finite separated structures stk(α) = A0A1 . . . such that A0 = Sk and for each

i ∈ N we set Ai+1 = Ai[ri]. We will be interested either in properties of the
whole sequence of structures expressed in Lµ[MSO] or in a property of the limit
structure limAi expressed in MSO.

Definition 1. A separated structure rewriting game G = (V0, V1, E, ϕ) consists
of disjoint sets V0 and V1 of positions of Player 0 and Player 1, respectively, a
set of moves E ⊆ V × S × V , where V = V0 ∪ V1 and S ⊆ S(τ) is a finite set
of separated rewriting rules, and either an Lµ[MSO] or an MSO formula ϕ that
describes the winning condition of the game.

A play of G = (V0, V1, E, ϕ) starts in a distinguished position v0 ∈ V and with
a starting structure A0 = Sk for some non-terminal Rk ∈ τn. If the play is in a
position v ∈ Vi with structure A, player i must choose a move (v, r, w) ∈ E (for
simplicity we assume that such a move always exists). The play continues from
the position w with the structure A[r]. Formally, a play π = v0e0v1e1 . . . of G is an
infinite sequence of positions and moves, π ∈ (V E)ω, such that ei = (vi, ri, vi+1),
i.e. the ith move goes from the ith position to the (i+ 1)st position. A play π as
above induces a sequence of rules r0r1 . . . seen during the play, which we denote
by rules(π).

A strategy of player i is a function that assigns to each history of a play
ending in a position of player i, i.e. to each h = v0 . . . vn ∈ (V E)∗Vi, the next
move (vn, r, w) ∈ E. Note that the structure corresponding to each position vn
is a function of h and the starting symbol Rk, so we can omit the constructed
structures in the definition of a strategy. We say that a play π = v0e0v1 . . . is
consistent with a strategy σi of player i if for each prefix h = v0e0 . . . vk of π
with vk ∈ Vi it holds that ek = (vk, r, vk+1) = σi(h). When the starting position
v0, the non-terminal symbol Rk, and the strategies of both players σ0 and σ1 are
fixed, there exists a unique play π = v0e0 . . . that starts in v0 and is consistent
with both these strategies. This play induces a unique sequence of structures
stk(rules(π)), which we will denote by πk(σ0, σ1, v0). We say that Player 0 wins
the play π if either stk(rules(π)) |= ϕ, in case the winning condition is given by
an Lµ[MSO] formula ϕ, or if lim stk(rules(π)) |= ϕ, if ϕ is an MSO formula to
be evaluated on the limit structure.

We say that Player 0 wins the game G from v0 and Rk if she has a strat-
egy σ0 such that for all strategies σ1 of her opponent, πk(σ0, σ1, v0) |= ϕ (or
limπk(σ0, σ1, v0) |= ϕ). If Player 1 has a strategy σ1 such that for all strategies
σ0 of Player 0, πk(σ0, σ1, v0) 6|= ϕ, then we say that Player 1 wins the game G.
We will prove the following main result about separated graph rewriting games.

Theorem 1. Let G be a finite separated structure rewriting game, v0 a position
in G and Rk ∈ τn a non-terminal symbol. Then either Player 0 wins G starting
from v0 and Rk or Player 1 does, it is decidable which player is the winner and
a winning strategy for this player can be constructed.

The theorem above is a consequence of the following stronger theorem, which
allows us to reduce questions about separated structure rewriting games to ques-
tions about ω-regular games.

Theorem 2. Let S be a finite set of separated structure rewriting rules over a
signature τ = τn ∪ τt and let Rk ∈ τn. For any MSO formula ϕ the set of finite
sequences of rules which end in a structure satisfying ϕ, i.e. the set

{r0 . . . ri | stk(r0 . . . ri)[i] |= ϕ}

is a regular subset of S∗. Moreover, the set {π ⊆ Sω | lim stk(π) |= ϕ} is an
ω-regular subset of Sω. Both these statements are effective, i.e. the automata
can be algorithmically constructed from S,Rk and ϕ.

By Theorem 2, if ϕ is a formula of Lµ[MSO], then, for each MSO-sentence
ψMSO occurring in ϕ, there is a corresponding regular language L(ψMSO) ⊆ S∗.
By the standard correspondence of regular languages and MSO (and Lµ as well)
on words, this implies that the set {π ⊆ Sω | stk(π) |= ϕ} is ω-regular as well.
Thus, both in the case of an Lµ[MSO] formula evaluated on the whole sequence,
and in the case of an MSO formula evaluated on the limit structure, the set of
winning sequences of rules is ω-regular, and the automaton recognising it can be
effectively constructed.

Therefore, for any separated structure rewriting game G, we get an equivalent
ω-regular winning condition over the same game arena. Since ω-regular games
are determined, establishing the winner in such games is decidable and finite-
memory strategies are sufficient to win [7], Theorem 1 follows. Note that any
result on ω-regular games can be transferred to separated structure games in the
same way: for example, players could be allowed to take moves concurrently or
one could consider multi-player games and ask for admissible strategies [8].

Let us remark2 that defining A[L→ R] as the structure with all occurrences
of L rewritten to R is crucial for Theorem 2 and its consequences. Note that this
is in contrast to the case of graph grammars [5], where any rule can be applied
at any position. If we allowed the players to pick both a position to rewrite and a
rewriting rule, it would be possible to simulate active context-free games, which
were proven undecidable in [9]. To simulate these games, one would represent a
word as a directed line with unary non-terminal predicates representing letters,

e.g. the word aba would be represented as a b a .

4 Proving Regularity: from Structures to Words

In this section, we prove Theorem 2 in a few steps. First, we reduce structure
rewriting to tree rewriting in a way reminding of the tight connection between
separated handle rewriting of graphs and the vertex replacement algebra [5].
In addition to the standard vertex replacement methods, we also preserve the
exact sequence of rewriting steps. Next, we are concerned with checking an
MSO property on a tree constructed by a sequence of applications of simple tree
rewriting rules. To do this, we take a tree automaton that checks this property
and construct an alternating word automaton running on the sequence of tree
rewriting rules that simulates the tree automaton.

2 Thanks to Anca Muscholl for pointing out this remark and reduction.

4.1 From Structures to Trees

We represent the structures that the players manipulate by binary trees with
labelled nodes. The leaves of the tree represent the elements of the structure,
and the labels describe which tuples of elements are in which relations. Note
that this is a standard representation for graphs of bounded clique-width.

For our purposes, a labelled binary tree T = (T,�, λ) consists of a prefix-
closed set T ⊆ {0, 1}∗, the prefix relation � and the labelling function λ : T →
ΣS . The set of labels ΣS depends on a number kS that we will later compute
from the considered set of separated rewrite rules S, and contains the following
types of labels (with an intuition on how they will be used later).

– The symbols ‘n’ for all n ≤ kS (used to label leaves of T).
– The symbol ‘⊕’ (denoting the disjoint sum).
– The symbols ‘i← j’ for all i, j ≤ kS (used to re-label i to j).
– The symbols ‘Rk(i1, . . . , irk)’ for each Rk ∈ τ and each number ij ≤ kS

(for adding to the relation Rk all tuples (a1, . . . , ark) if aj is labelled by ij).

We consider only labellings that obey a few simple structural properties.

(1) The label λ(v) is a number if and only if v is a leaf of T .
(2) A node v ∈ T has both successors v0, v1 ∈ T if and only if λ(v) = ⊕.

Moreover, for separated structures, one additional property holds.

(3) For each Rk ∈ τn the subtree below every node v with λ(v) = Rk(i1, . . . , irk)
has exactly |{i1, . . . , irk}| leaves and all its other nodes are labelled by ⊕.

With each tree T = (T,�, λ) that fulfils the properties (1) and (2) we now
associate a structure A = S(T), and if (3) is fulfilled, then A is separated. As
said before, the universe of A consists of the leaves of T . For each Rk ∈ τ , a
tuple (v1, . . . , vrk) belongs to RA

k iff there exists a node v ∈ T such that:

– v � vj for all j ∈ {1, . . . , rk},
– λ(v) = Rk(i1, . . . , irk) for some tuple i1, . . . , irk ≤ kS , such that
– for j ∈ {1, . . . , rk}, each vj is re-labelled to ij on the path from vj to v in T .

To define the label ln of a leaf w to which it is re-labelled on a path w = w0 . . . wn,
we start with l0 = λ(w) and set

lk+1 =

{
j if λ(wk) = j ← i and lk = i,

lk otherwise.

Note that the condition that no Rk(i)-labels appear beneath any Rl(i)-label for
all Rk, Rl ∈ τn guarantees, that no elements in RA

k will appear in any other
non-terminal relation, so the structure A is separated in such a case.

For finite structures, the converse of the above remark also holds. The follow-
ing lemma is obtained by constructing the tree T bottom-up, starting with the
separated non-terminal relations of A, as shown for an example structure in Fig-
ure 2 (where there is one terminal binary relation R0 drawn as unlabelled edges,
and one explicitly marked non-terminal binary relation R1; some re-labelling
nodes in the tree are not strictly necessary).

Lemma 1. For every finite separated structure A there exists a tree T such
that A = S(T), the properties (1)–(3) above are satisfied, and each element of
the structure is re-labelled to a unique label at the root of T .

1

2

5

6

R1

1

⊕

2

⊕
R0(1, 2)

R0(1, 5)

R0(2, 6)

6← 4

5← 3

R1(3, 4)

⊕
43

Fig. 2. Representing a separated structure, with marked subtree for the relation R1.

For a finite set of separated rewriting rules S = {L1 → R1, . . . ,Lm → Rm},
let Tk be a tree that represents Rk (without Pl), as constructed above. Let
mk be the maximal number that appears in the labels of Tk and set kS =
maxk=1...mmk + 1. A crucial observation is that replacing all Rk(i)-labelled
subtrees in a representation of a separated structure by an extended tree Tk (see
the added re-labellings in Figure 2) exactly corresponds to structure rewriting.

To extend Tk, we construct, for a label Rj(i1, . . . , irj), the replacement tree
Tk[Rj(i1, . . . , irj)] as follows. Let l(r) be the unique label that every element r
of Rk gets at the root of Tk (guaranteed by Lemma 1). We create a sequence of
nodes that, for each r ∈ Rk, contains exactly one node with label ‘n ← l(r)’.
The number n is equal to kS if r is in no set PRk

l , and n = im if r ∈ PRk

l and
the element l corresponds to the im-leaf in the representation of Rj(i1, . . . , irj).

The relationship between structure rewriting and tree rewriting is formalised
in the following lemma which is a consequence of the definitions of structure
rewriting and interpretation of a structure in a tree.

Lemma 2. Let A = S(T) be a separated structure represented by a tree T sat-
isfying properties (1)–(3) and such that the maximal label number kS does not
appear in i in any label Rk(i) in T . Then, for each rule Lk → Rk from S with
Rl ∈ τn being the non-empty relation in L, the tree T ′ obtained from T by
replacing each Rl(i) subtree by Tk[Rl(i)], represents the structure A[Lk → Rk].

It also follows from the construction, that if A0A1 . . . is a sequence of rewrit-
ten structures and T0T1 . . . the corresponding sequence of trees representing
them, then limAn is represented by lim Tn.

Thus, to complete the transition from structure rewriting to tree rewriting,
we only need to translate the MSO properties of structures to MSO properties

of trees that represent them. This is done in an analogous way to interpreting
bounded clique-width graphs in the tree. By the definition of S(T) given above,

elements of S(T) are leaves of T and a tuple v belongs to R
S(T)
l if an inductively

defined condition is fulfilled. The property of being a leaf is easy to express in

MSO, and the inductive definition for v ∈ R
S(T)
l can be expressed as well,

because MSO is strong enough to allow fixed-point definitions and there are
only finitely many labels in use. Thus, we can state the following lemma.

Lemma 3. Fix a signature τ and kS. For every MSO formula ϕ over τ there
exists a (computable) MSO formula ψ over the signature {�, Px | x ∈ ΣS} of
the ΣS-labelled trees such that for each such tree T , S(T) |= ϕ ⇐⇒ T |= ψ.

4.2 Simplifying Tree Rewriting

Above, we translated separated structure rewriting to rewriting trees, where
only specific subtrees are replaced. This restriction is important as alternating
reachability is undecidable on arbitrary ground tree rewriting systems [10].

Before we proceed to words, let us reduce the problem to a simplified version
of tree rewriting: one where only leaves are rewritten. Previously, we have been
rewriting a subtree of an Rl(i)-labelled node to some other tree. But property
(3), fulfilled by all trees representing separated structures, guarantees that there
are only finitely many isomorphic subtrees S rooted at Rl(i)-labelled nodes.
Thus, we replace such nodes and the whole subtree by new leaves labelled by
RSl (i), and from now on we operate on such reduced trees.

To rewrite trees, we use the same notation as for structure rewriting. Thus,
if T is a tree, then T [c → T ′] denotes T with all c-labelled leaves replaced by
T ′. Note that this is a special case of separated structure rewriting if leaves are
labelled by non-terminal predicates. (To preserve the partial order on the tree,
the whole tree T ′ must be included in the new predicate Pc.)

By the classical result of Rabin, for each MSO formula ψ over a labelled
binary tree, there exists a non-deterministic tree automaton Aψ that accepts a
labelled tree T if and only if T |= ψ.

Given a sequence of separated rewriting rules π = r0r1 . . . that generates a
sequence of structures stk(π) = A0A1 . . ., we have shown above how to reduce
the question whether An |= ϕ (or limAn |= ϕ) to the question whether Tn |= ψ
(or lim Tn |= ψ), where Tn are the corresponding trees.

If Aψ is the tree automaton corresponding to ψ, we construct an automaton
A′ψ that accepts the reduced tree (with all Rk(i)-labelled nodes with subtrees

S replaced by RSi (i)-labelled leaves) if and only if Aψ accepts the original one.
This is done by letting A′ψ, in an RSi (i)-leaf, simulate any run of Aψ on the
subtree S (which is possible, as S has bounded size).

4.3 From Trees to Words

For the sequence of structures and rules considered above, let T0 be a tree such
that A0 = S(T0). We replace each rule ri = Lk → Rk, where Rl is the only

non-empty relation in Lk, by si = RSl (i) → Tk[Rl(i)]
3. Rewriting the tree T0

using the rules si generates a sequence of reduced trees T0T1 . . . and, as shown
previously, An |= ϕ (or limAn |= ϕ) if and only if A′ψ accepts Tn (or lim Tn).

We will show how to simulate the run of A′ψ on the tree Tn (or lim Tn) by a
run of an alternating word automaton B on the sequence s0s1 . . . sn (or s0s1 . . .)
of rules. By the correspondence between si and ri, the same automaton B (with
swapped alphabet) accepts the corresponding sequences r0r1 . . . of separated
structure rewriting rules as required in Theorem 2.

The construction of B from A′ψ and the starting tree T0 proceeds in two steps.
We first reduce the problem to tree rewriting rules where the right-hand side is
either a constant or has height one, and the starting tree has one vertex. After
this easy reduction, we construct the alternating automaton B in Lemma 4.

For the first step, observe that rewriting with a rule s = c → T can be
represented as a sequence of rewritings with rules having a smaller right-hand
side, building the tree T step by step. For this, we need to add new labels
corresponding to every proper subtree of T . In this way, a single rule s is replaced
by a sequence of rules s′1 . . . s

′
m with simpler right-hand sides and using more

labels, such that applying s′1 . . . s
′
m in sequence gives the same result as applying

s once. Since the number m of smaller rules needed to replace a given rule s is
constant, this operation preserves regularity, i.e. for a regular set L of sequences
of the simpler rules s′, the set of sequences of full rules such that their expansion
is in L is regular as well. Thus, it is enough to show that the set of sequences of
simple rules resulting in a tree accepted by A′ψ is regular.

Let R be a finite set of tree rewriting rules of the simple form c → c′,
c → g(c′) or c → f(c1, c2). For such tree rewriting rules, we make the second
step, in which an alternating word automaton is constructed that simulates the
automaton running on the tree. The existence of such an automaton, stated in
the following lemma, is another instance of the classical relationship between
tree automata and games.

Lemma 4. Let A be a non-deterministic parity tree automaton and s a label.
There exists an alternating parity word automaton B over the alphabet R such
that B accepts s0s1 . . . ∈ Rω (or s0 . . . sn ∈ R∗) if and only if A accepts the limit
tree lim Ti (or Tn), where T0 consists of one node labelled a0 and Ti+1 = Ti[si].

Since alternating parity word automata accept exactly the ω-regular lan-
guages, the above lemma completes the proof of Theorem 2.

5 Consequences

In this section we state a few consequences of Theorem 2 that illustrate the
usefulness of structure rewriting games. To start with, let us remark that many

3 Note that a priori si is not a single rule because there can be different trees S and
sequences i. Thus, formally, we should replace ri by a sequence of all possible si-
rules, with added checks that not too much is rewritten. But the differences in S and
i are in fact irrelevant: one could as well pick any single option and use it everywhere
consistently. Therefore we take the liberty and consider si as a single rule.

operations on structures of bounded size can be represented by separated struc-
ture rewriting in a more natural way than by listing all possible states.

To move away from finite-state systems, let us show how decidability of MSO
over pushdown graphs is a direct consequence of Theorem 1. It follows from the
fact that every pushdown graph can be constructed as limit graph in a simple
game with two positions and two kinds of moves, one with rules that construct
the configuration of the pushdown system when the stack is empty and another
one used to construct the next configurations with more symbols on the stack.

The intimate connection of ω-regularity and MSO, together with Theorem 2,
allows us to make direct use of the above construction to generalise Theorem 1 to
games played on pushdown arenas. Indeed, ω-regular winning conditions can be
expressed in MSO, so if MSO is decidable on a class of graphs, so is establishing
the winner in games with ω-regular winning conditions.

In addition to the synthesis problem we considered, one might ask whether
an Lµ[MSO] formula (of the full µ-calculus, allowing the � operator as well)
holds on the whole abstract reduction graph generated by a separated structure
rewriting system. This verification problem can also be solved with our methods,
using the standard translation between µ-calculus and parity games.

Let us finally explain why the assumption that the predicates PR
l are pairwise

disjoint, made in the definition of separated rewrite rules, is not necessary. In the
proofs, the only use of this disjointness was when a node in a tree representing
an element r ∈ R was re-labelled. The newly assigned label guaranteed that
r will appear in the correct tuples in all relations. If r belonged to various
different predicates PR

l , it would be necessary to assign to it a set of labels at
the same time, instead of a single one. Technically, this is a change as the trees
representing structures would have to be labelled by sets of numbers, and the
MSO formulas interpreting the structure in such tree would have to account for
that. Substantially, it is exactly analogous to the case we presented. Similarly,
one could extend rewriting rules to include special predicates PRk,i

l , which would
add the marked elements only to the relation Rk and only at ith position.

6 Perspectives

We proved that in the special case of separated rewriting rules, the synthesis
problem remains decidable even if the expressive logic Lµ[MSO] is used to specify
the winning condition. It is natural to ask about other, less restricted classes of
structure rewrite rules and logics, for which this problem is decidable.

One interesting logic to consider is the extension of first-order logic by simple
reachability. It was shown in [11] that this logic is decidable on a class of graphs
that can be represented by trees similar to the ones considered in this paper, but
with an additional node label for asynchronous product. We ask whether there
is a syntactic class of structure rewrite rules that corresponds to such graphs.

Another example is the class of structure rewrite rules L → R where both
in L and in R the only non-empty relations are unary (but now L can contain
more than one element, so the rule is not necessarily separated). If the starting

structure contains only unary relations as well, then only unary relations appear
in all rewritten structures. In this case, it is enough to count the number of
elements in each combination of the unary predicates, and thus the occurring
structures are just another representation of Petri nets, and rewriting represents
changes of the marking of the net. Thus, for this special case, it is known precisely
which problems are and which are not decidable. But if one allows only unary
predicates on the left-hand side and any separated structure on the right-hand
side, then the question which problems remain decidable is open.

In addition to other classes of rules and logics, it is interesting to ask how
restricted structure rewriting rules can be used to approximate systems where
more complex rewriting takes place. One example of this kind is the use of
hyperedge replacement grammars for abstraction of data in pointer-manipulating
programs [12]. Graphs obtained by hyperedge replacement are a subclass of
structures generated by separated rewriting which we considered. This justifies
our view of the presented results as a first step towards algorithmic synthesis for
general structure rewriting systems.

References

1. Nagl, M.: A tutorial and bibliographical survey on graph grammars. In: Graph-
Grammars and Their Application to Computer Science and Biology. Volume 73 of
LNCS. Springer (1978) 70–126

2. Rajlich, V.: Relational structures and dynamics of certain discrete systems. In:
Proc. of MFCS’73, High Tatras, Sept.3-8. (1973) 285–292

3. Joshi, S., König, B.: Applying the graph minor theorem to the verification of graph
transformation systems. In: Proc. of CAV’08. Volume 5123 of LNCS. Springer
(2008) 214–226

4. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Proc. ACM
Conf. on Programming Language Design and Implementation. (2001)

5. Courcelle, B., Engelfriet, J., Rozenberg, G.: Context-free handle-rewriting hyper-
graph grammars. In: Proc. of the 4th International Workshop on Graph-Grammars
and Their Application to Computer Science. Volume 532 of LNCS. Springer (1991)
253–268

6. Grädel, E., Thomas, W., Wilke, T., eds.: Automata, Logics, and Infinite Games.
Volume 2500 of LNCS. Springer (2002)

7. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and
Applies Logic 65(2) (1993) 149–184

8. Berwanger, D.: Admissibility in infinite games. In: Proc. of the 24th STACS.
Volume 4393 of LNCS. Springer (2007) 188–199

9. Muscholl, A., Schwentick, T., Segoufin, L.: Active context-free games. In: Proc. of
STACS’04. Volume 2996 of LNCS. (2004) 452–464

10. Löding, C.: Infinite Graphs Generated by Tree Rewriting. PhD thesis (2003)
11. Colcombet, T.: On families of graphs having a decidable first order theory with

reachability. In: ICALP. Volume 2380 of LNCS. Springer (2002) 98–109
12. Rieger, S., Noll, T.: Abstracting complex data structures by hyperedge replace-

ment. In: Proc. of ICGT’08. Volume 5214 of LNCS. Springer (2008) 69–83

A Semantics of MSO and Lµ[MSO]

For a fixed signature τ = {R1, . . . , Rn} where each Ri has associated arity ri,
the syntax of MSO formulas over τ is given by

ψ = Ri(x1, . . . , xri) | xk = xl | xk ∈ Xl | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ∃xk ψ | ∃Xk ψ,

where xi are first-order variables and Xj are second-order variables. A relational
structure A = (A,RA

1 , . . . , R
A
n), together with an assignment for first-order vari-

ables θ(xi) ∈ A and an assignment for second-order variables Θ(Xj) ⊆ A, satis-
fies the formula ψ, denoted A, θ, Θ |= ψ, if:

– A, θ, Θ |= Ri(x1, . . . , xri) iff (θ(x1), . . . , θ(xri)) ∈ RA
i ,

– A, θ, Θ |= xk = xl iff θ(xk) = θ(xl),

– A, θ, Θ |= xk ∈ Xl iff θ(xk) ∈ Θ(Xl),

– A, θ, Θ |= ¬ψ iff it is not the case that A, θ, Θ |= ψ,

– A, θ, Θ |= ψ1 ∧ ψ2 iff A, θ, Θ |= ψ1 and A, θ, Θ |= ψ2,

– A, θ, Θ |= ψ1 ∨ ψ2 iff A, θ, Θ |= ψ1 or A, θ, Θ |= ψ2,

– A, θ, Θ |= ∃xk ψ iff A, θ[xk ← a], Θ |= ψ for some a ∈ A,

– A, θ, Θ |= ∃Xl ϕ iff A, θ, Θ[Xl ← B] |= ϕ for some B ⊆ A,

where θ[xk ← a] is an assignment that assigns a to xk and the same values as θ
to all other variables (and similarly for Θ). Note that the domain of assignments
we use is always only a finite subset of the variables, and we say that A |= ϕ if
this holds for empty assignments θ,Θ = ∅.

The syntax of Lµ[MSO] formulas is given by

ϕ = ψMSO | Yk | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | µYk ϕ | νYk ϕ,

where ψMSO is an MSO sentence and Yk are fixed-point variables. The notion
that a (finite or infinite) sequence of structures Π = A0A1 . . . together with an
assignment of fixed-point variables ε(Yk) ⊆ N satisfies an Lµ[MSO] formula ϕ
on position i, denoted Π, ε, i |= ϕ, is defined as follows.

– Π, ε, i |= ψMSO iff Π[i] |= ψMSO.

– Π, ε, i |= Yk iff i ∈ ε(Yk).

– Π, ε, i |= ϕ ∧ ψ (ϕ ∨ ψ) iff Π, ε, i |= ϕ and (or) Π, ε, i |= ψ.

– Π, ε, i |= ♦ϕ iff Π, ε, (i+ 1) |= ϕ.

– Π, ε, i |= µYk ϕ iff Π, ε[Yk ← V], i |= ϕ, where where V is the smallest subset
of N for which V = {i | Π, ε[Yk ← V], i |= ϕ} holds.

– Π, ε, i |= νYk ϕ iff Π, ε[Yk ← V], i |= ϕ, where where V is the biggest subset
of N for which V = {i | Π, ε[Yk ← V], i |= ϕ} holds.

The semantics above is well defined only if the smallest and biggest solutions to
the fixed-point equation exist, but this is indeed the case due to monotonicity
of all the operators.

B Automata Definitions

We use the standard notions of alternating parity ω-word automata and non-
deterministic parity ω-tree automata, with a slight technical modification. The
word automata we use have priorities on transitions, whereas the tree automata
are standard and have priorities on states, but are additionally equipped with a
set of final accepting positions in case some branches of the tree are finite. We
only give syntactic definitions to fix notation, the semantics is standard and thus
only sketched.

To define alternating automata we consider, for a given set of states Q, the
set B+(Q) of all positive boolean formulas over Q. By definition B+(Q) is the set
of all boolean formulas built using elements of Q, the boolean connectives ∧ and
∨ and the constants > (true) and ⊥ (false). Note that negation is not allowed.
We say that a subset X ⊆ Q satisfies a formula ϕ ∈ B+(Q) if ϕ is satisfied by
the assignment that assigns true to all elements of X and false to Q \X.

An alternating parity ω-word automaton A over an alphabet Σ is a tuple
(Q, δ, q0, Ω), where Q is the set of states, q0 is the initial state, and δ specifies
a positive boolean formula as transition condition, δ : Q × Σ → B+(Q). The
function Ω assign to each transition, i.e. to each pair (q, a) where q ∈ Q and
a ∈ Σ, a priority Ω(q, a) ∈ N, used later in a parity condition.

A correct run of A on a word w is a tree with nodes labelled with Q and edges
with Σ where the successors of each node form a satisfying set for the boolean
condition related to the state in this node and to the corresponding letter in
w used as the edge label. A run is accepting if the minimal priority appearing
infinitely often on each of the branches of the run-tree is even.

As can be proved by expressing acceptance of alternating automata in monadic
second-order logic on infinite words and then going back from logic to automata,
as done by Büchi, or by an explicit construction by Miyano and Hayashi, alter-
nating parity automata recognise exactly the same languages as deterministic
parity automata, the ω-regular languages.

A non-deterministic parity ω-tree automaton A over an alphabetΣ consisting
now of both unary and binary symbols, is a tuple (Q,∆, q0, Ω, F). Again, Q is
the set of states, q0 is an initial state, Ω assigns priorities to states, F ⊆ Q×Σ
is a set of accepting final positions, and ∆ ⊆ (Q×Σ ×Q)∪ (Q×Σ ×Q×Q) is
a transition relation.

A labelled binary tree is a prefix-closed subset T of {0, 1}∗ together with a
labelling λ : T → Σ such that if v has a successor in T (either v0 or v1) then it
has exactly one successor if λ(v) is a unary symbol, and both successors in the
other case.

The run of A on (T, λ) is a mapping ρ : T → Q such that ρ(ε) = q0, for each
v ∈ T having one successor w ∈ T (ρ(v), λ(v), ρ(w)) ∈ ∆, and for each v ∈ T
with both successors in T , (ρ(v), λ(v), ρ(v0), ρ(v1)) ∈ ∆. The run ρ is accepting
if for all infinite branches π of T the minimal priority occurring infinitely often
in Ω(ρ(π)) is even, and for all leaves v of T the pair (ρ(v), λ(v)) ∈ F .

C Proofs of Technical Lemmas

C.1 Representing Finite Structures as Trees

Lemma 1. For every finite separated structure A there exists a tree T such
that A = S(T), the properties (1)–(3) from Section 4.1 are satisfied, and each
element of the structure is re-labelled to a unique label at the root of T .

Proof. Let a1, a2, . . . , an be all elements of the structure A. We construct the
appropriate tree T working bottom-up, as in the example in Figure 3.

We start the construction of T by taking n leaves v1, . . . , vn and setting
λ(vi) = i. Note that n is the number of elements in A and the leaf vi will
correspond to the element ai.

We start adding tuples to relations by first taking care of the non-terminal
ones (note that this order is important). Thus, for each Rl ∈ τn and each tuple
(ai1 , . . . , airl) ∈ RA

l , we first create the disjoint sum of all nodes vi1 , . . . , virl
(adding ⊕ nodes as needed) and then add a node labelled Rl(i1, . . . irl).

Observe that we get a set of trees rooted at Rl(i)-labelled nodes, one tree for
each tuple in a non-terminal relation. These trees are disjoint because so are the
tuples, as we assumed that the structure A is separated.

After all tuples in non-terminal relations have been added, we complete the
construction by taking the disjoint sum of all the trees and leaves constructed
thus far and adding the appropriate nodes labelled with terminal relation sym-
bols in any order. The properties (1)–(3) are satisfied in this way, and the re-
sulting tree indeed represents A. ut

1

2

3

4

R1

1

⊕

2

⊕

R0(1, 2)

R0(1, 3)

R0(2, 4)

R1(3, 4)

⊕

43

Fig. 3. Representing a separated structure with non-terminal relation R1.

C.2 Connection between Structure and Tree Rewriting

Lemma 2 Let A = S(T) be a separated structure represented by a tree T
satisfying properties (1)–(3) from Section 4.1 and such that the maximal label
number kS does not appear in i in any label Rk(i) in T . Then, for each rule
Lk → Rk from S with Rl ∈ τn being the non-empty relation in L, the tree T ′
obtained from T by replacing each Rl(i) subtree by Tk[Rl(i)], represents the
structure A[Lk → Rk].

Proof. As both separated structure rewriting and replacing disjoint subtrees
are confluent, it is enough to prove this lemma for a single application of the
rule Lk → Rk to a tuple (a0, . . . , arl) ∈ RA

l . Let σ be the embedding L ↪→
(a0, . . . , arl). We verify that the tree T ′σ, obtained by replacing only the one
occurrence of Rl(i) in T , indeed represents the structure A[Lk → Rk/σ].

For the set of vertices, observe that the leaves of T ′σ are exactly the leaves of
T minus the ones representing {a0, . . . , arl}, plus the leaves of Tk. By definition,
this exactly corresponds to the set of vertices of A[Lk → Rk/σ].

For the relations, first observe that all tuples in relations in A that do not con-
tain an element from {a0, . . . , arl} are preserved. Similarly, all tuples in relation
in Rk are added, as required in the definition of A[Lk → Rk/σ].

The relations that connect elements of Rk with elements of A, as represented
by T ′σ, are due to ‘Rn(i)’-labelled nodes from T , with i containing a number to
which an element of Rk is re-labelled at that node. Since in Tk[Rl(i1, . . . , irl)] we
re-labelled everything to either kS or l(r), and kS was not used in T , this happens
only for vertices represented by nodes re-labelled to some l(r) in Tk[Rl(i1, . . . , irl)].
By definition of this tree, we re-labelled exactly the nodes representing elements
r in Pl, for l labelled by in. By definition of the tree representation of structures,
such nodes will be put in the Rn relation on ith position instead of all nodes
that had the ith label in in the replaced subtree. This exactly corresponds to
the definition of new relations in A[L→ R/σ]. ut

C.3 Word Automata for Tree Rewriting Sequences

Lemma 4 Let R be a finite set of tree rewriting rules of the simple form c →
c′, c → g(c′) or c → f(c1, c2), and let A be a non-deterministic parity tree
automaton and s a label. There exists an alternating parity word automaton B
over the alphabet R such that B accepts s0s1 . . . ∈ Rω (or s0 . . . sn ∈ R∗) if and
only if A accepts the limit tree lim Ti (or Tn), where T0 consists of one node
labelled a0 and Ti+1 = Ti[si].

Proof. We construct the alternating word automaton B in the following way.
The states Q of B are defined as all pairs (q, a) where q is a state of A and a is a
label used either on the left-hand side or on the right-hand side of the rewriting
rules in R. The initial state of B is (q0, a0), where q0 is the initial state of A.

The transition of B from state (q, a) when the rule c → T is encountered
is defined as follows. If c 6= a then the resulting state is again (q, a) (formally,
the (q, a) here is a formula over B+(Q)), and the priority of this transition is

0 if (q, a) is an accepting final position of A and 1 otherwise. If a rule a → c
is encountered in the position (q, a) then the resulting state is (q, c) and the
priority of this transition is 0 if the automaton A accepts leaves in state q and
1 otherwise.

Let us now define the transition of B from (q, a) when a rule a → g(c) or
a → f(c, c′) is encountered. In the first case, any transition q, g → q′ of A
is chosen and the next state is (q′, c), so the formula defining this transition
of the alternating word automaton is

∨
q,g→q′∈∆A

(q′, c). The priority of this
transition is the same as the priority of the state q in A. In the second case,
again a transition q, f → q1, q2 of A is chosen, but now a universal choice of the
direction is made afterwards, i.e. the defining formula is∨

q,f → q1,q2 ∈∆A

(q1, c1) ∧ (q2, c2).

The priority of the transition is again the same as the priority of q in A.
With this definition of B, let us prove that B accepts a word w if and only if A

accepts the corresponding limit tree. Observe that the structure of the run-tree
of B is exactly the same as the structure of the limit tree augmented with the
non-deterministic choices for the run of A. Thus, if there is an accepting run of
A on the limit tree, we pick the corresponding rule q, g → q′ or q, f → q1, q2 at
each disjunction in the run-tree of B. If B does not accept w then there exists a
branch of the run-tree on which the minimal priority occurring infinitely often is
odd. But the same minimal priority occurs infinitely often on the corresponding
branch of the run of A, or the branch ends in a final position of A that is not
accepting, which contradicts the assumption that the run of A was accepting.
Conversely, if B accepts a word w then we define the run of A on the limit
tree by picking the corresponding rules q, g → q′ or q, f → q1, q2 from the
corresponding positions of the run-tree of B. Again, if this is not an accepting
run of A, then there is a branch with odd minimal priority occurring infinitely
often or ending in a non-accepting final position. But this branch corresponds
to a branch of the run-tree of B, which contradicts the assumption that this was
an accepting run-tree. ut

D Game Generating a Pushdown Graph

Let us consider a pushdown system with states Q = {q1, . . . , qn}, two stack
symbols a and b and two transition functions, pusha, pushb : Q→ Q (we assume
that popping a symbol does not change the state).

In the game we construct, we will use three non-terminal relation symbols
R⊥, Ra, Rb, each of arity n. Intuitively, Rs will describe the states for which the
top-most stack symbol is s. As terminal symbols, we will use unary predicates
Q1, . . . , Qn to label elements corresponding to each state, and three binary re-
lations, pusha,pushb, and pop. As the starting structure we take an n-tuple in
the relation R⊥.

We use three separated structure rewriting rules in the game: L⊥ → R,La →
R and Lb → R. The left-hand side is always an n-tuple l1, . . . , ln of elements
in the relation R⊥, Ra, or respectively Rb. The right-hand side structure R,
sketched in Figure 4, is the same for all rules and defined as

R =

(
{r1, . . . , rn, ra1 , . . . , ran, rb1, . . . , rbn},

RR
⊥ , R

R
a , R

R
b , Q

R
1 , . . . Q

R
n , pushR

a , pushR
b , popR, PR

l1 , . . . P
R
ln

)
.

The relation RR
⊥ is empty, while for c = a, b the relation RR

c = {(rc1, . . . , rcn)}.
Each predicate QR

i contains only the element ri, and each PR
li

= {ri} as well. As

pop does not change states, the relation popR consists of all pairs (ri, r
a
i) and

(ri, r
b
i). The relations pushR

c for c = a, b are defined as

pushR
c = {(ri, rcj) | pushc(qi) = qj}.

The structure rewriting game that generates the corresponding pushdown
graph is a one-player game, where the player has no choice but to first use the
rule L⊥ → R and then infinitely often alternate between the rules La → R and
Lb → R. For each such alternation, a new level of the stack is added, and the
relations pusha, pushb and pop are created exactly as in the pushdown system.
Thus, in the limit we get the complete pushdown graph.

r0 r1 . . . rn

ra0 ra1 . . . ran
pop

pop
pop

Ra

rb0 rb1 . . . rbn

po
p

po
p

po
p

Rb

p
u
s
h

p
u
s
h

p
u
s
h

Q0, Pl0 Q1, Pl1 Qn, Pln

Fig. 4. Right-hand side of the rules generating a pushdown graph.

