First-Order Logic with Counting for General Game Playing

Łukasz Kaiser and Łukasz Stafiniak

CNRS & LIAFA, Paris

GIGA 2011, Barcelona

Rewriting Example

Rewriting Example

Rewriting Example

Rewriting Example

Embedding: σ is injective and $R_i^{\mathfrak{A}}(a_1,\ldots,a_{r_i}) \Leftrightarrow R_i^{\mathfrak{B}}(\sigma(a_1),\ldots,\sigma(a_{r_i}))$

$$\sigma: \quad \mathfrak{A} = (A, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}}) \quad \hookrightarrow \quad (B, R_1^{\mathfrak{B}}, R_2^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}}) = \mathfrak{B}$$

Rewriting:
$$\mathfrak{B} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma]$$
 iff $B = (A \setminus \sigma(L)) \dot{\cup} R$ and,
for $M = \{(r, a) \mid a = \sigma(I), r \in P_I^{\mathfrak{R}} \text{ for some } I \in L\} \cup \{(a, a) \mid a \in A\},$
 $(b_1, \ldots, b_{r_i}) \in R_i^{\mathfrak{B}} \iff (b_1, \ldots, b_{r_i}) \in R_i^{\mathfrak{R}} \text{ or } (b_1 M \times \ldots \times b_{r_i} M) \cap R_i^{\mathfrak{A}} \neq \emptyset.$
(in the second case at least one $b_j \notin \mathfrak{A}$)

First-Order Logic with Counting

Syntax

$$\varphi := R_{i}(x_{1}, \dots, x_{r_{i}}) \mid x_{i} = x_{j} \mid \rho < \rho$$

$$\mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x_{i} \varphi \mid \forall x_{i} \varphi$$

$$\rho := \frac{n}{m} \mid \rho + \rho \mid \rho \cdot \rho \mid \chi[\varphi] \mid \sum_{\overline{x} \mid \varphi} \rho$$

Semantics as expected, with

- $\chi[\varphi(\overline{x})] = 1$ iff $\varphi(\overline{x})$ holds
- $\sum_{\overline{x}|\varphi} \rho$ sums $\chi[\rho(\overline{x})]$ over \overline{x} satisfying $\varphi(\overline{x})$

First-Order Logic with Counting

Syntax

$$\varphi := R_{i}(x_{1}, \dots, x_{r_{i}}) \mid x_{i} = x_{j} \mid \rho < \rho$$

$$\mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x_{i} \varphi \mid \forall x_{i} \varphi$$

$$\rho := \frac{n}{m} \mid \rho + \rho \mid \rho \cdot \rho \mid \chi[\varphi] \mid \sum_{\overline{x} \mid \varphi} \rho$$

Semantics as expected, with

- $\chi[\varphi(\overline{x})] = 1$ iff $\varphi(\overline{x})$ holds
- $\sum_{\overline{x}|\varphi} \rho$ sums $\chi[\rho(\overline{x})]$ over \overline{x} satisfying $\varphi(\overline{x})$

Example from Chess

$$\sum_{x \mid \mathsf{bBeats}(x)} 1 + \chi[\mathsf{w}(x)] + 3 \cdot \chi[\mathsf{wK}(x)]$$

1<u>≤</u>*i*≤5

 $\bigwedge_{\leq i \leq 5} \exists y (R(x_i, y) \land C(y, x_{i+1})) \lor \bigwedge_{1 \leq i \leq 5} \exists y (R(x_i, y) \land C(x_{i+1}, y))))]$ 4/6

Why a New Game Model

Imagined Goal: general game playing robot

Why a New Game Model

Imagined Goal: general game playing robot

Visually Derived Rewriting Rules correspond directly to moves

Why a New Game Model

Imagined Goal: general game playing robot

Visually Derived Rewriting Rules correspond directly to moves

Logic with added operators is a natural description language

Deriving Heuristics

Methods

- Goal expansion and Type Normal Form
- Summing over conjuncts in existentially quantified conjunctions
- · Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

$$\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$$

Deriving Heuristics

Methods

- Goal expansion and Type Normal Form
- Summing over conjuncts in existentially quantified conjunctions
- Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

$$\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$$

Results vs. Fluxplayer-test	Toss Wins	Fluxplayer Wins	Tie
Breakthrough	95%	5%	0%
Connect4	20%	75%	5%
Connect5	0%	0%	100%
Pawn Whopping	50%	50%	0%

Deriving Heuristics

Methods

- Goal expansion and Type Normal Form
- Summing over conjuncts in existentially quantified conjunctions
- · Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

$$\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$$

Results vs. Fluxplayer-test	Toss Wins	Fluxplayer Wins	Tie
Breakthrough	95%	5%	0%
Connect4	20%	75%	5%
Connect5	0%	0%	100%
Pawn Whopping	50%	50%	0%

Thank You

(www.toss.sf.net)