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STRUCTURE REWRITING RULES

Rewriting Example

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRIRY,...,R0)=2
Embedding: ¢ is injective and R? (ay, ..., a,,) < R? (d(a1),...,0(a;,))
Rewriting Definition
B=AL —> R/o]iff B= (AN c(L))URand,
for M ={(r,a) | a=0(l),re Pl forsomeleL} U {(a,a)|acA},
(bi,..., b)) €RP < (by,...,b,)eRor (M x ... x b, M) n R* + &.

(in the second case at least one b; ¢ 2A)
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Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules
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STRUCTURE REWRITING GAMES

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:

« Existential: ey = A[L — 91/0 ], the player chooses the embedding ¢

o Universal: 25 = 2A[ £ — 91], all occurrences of £ are rewritten to R
Winning conditions:

« L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of o212 ... = (Unew Nizn Ais Unen Nizn R™)
+ Reach ¢: Player 0 wins if the play reaches 2( s.t. 2{ = ¢

Motivation: many questions are naturally defined as such games:
constraint satisfaction, model checking, graph measures, games people play
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EXAMPLE GAME: GOMOKU (CONN ECT- 5)
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SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o2 o R 5

Not Separated: o—R 5 R 5
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SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated:
Not Separated:

Simple Rule £ — fR: A is separated and £ is a single tuple in relation

Example
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DECIDABILITY OF SIMPLE REWRITING GAMES

Logics
+ L,[MSO]: Temporal properties expressed in L, (subsumes LTL) with
properties of structures (states) expressed in MSO

+ lim MSO: Property of the limit structure expressed in MSO
Theorem

+ Let R be a finite set of (universal) simple structure rewriting rules,
« and ¢ be an L,[MSO] or lim MSO formula.

Then the set {m € R” : (lim)S(7) & ¢} is w-regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable.
The winner has a winning strategy of a simple form.



PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k
+ @ representing disjoint sum
+ i < jto change colour of all
nodes from i to j
« ¢(i, ) to add all pairs of
(i, j)-coloured nodes to e
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PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

» Leafs of different colours1... k ° T °
+ @ representing disjoint sum e(s, o)
+ i < jto change colour of all i
nodes from i to j ®
- S
« ¢(i, ) to add all pairs of o e(e, o)
(i, j)-coloured nodes to e i
52
7N
o —eo — o ° L4

Theorem:
For every k there is an MSO-to-MSO interpretation Z such that
for all structures 2l of clique-width < k holds Z(7 (1)) = 2.
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PROOF: SIMPLE REWRITING IN THE TREE

(::) e(2,0)

2 1o (1)
e(2,3)
eB/@
O—0O / N\ \
S 2 3 31
20
2 KO\ 4 0,1« 4
e(2,0)
R e(3,1)
O O e(2,3)
3 1 4 o

®/
/ N\ AN

MSO-to-MSO interpretation: ¢ — v 2 3 R(0,1)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

@
S —>f(X, Y)
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

@®
Y - g(X, Y)

existential: pick transition

universal: left or right
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PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

Y- ¢(X,Y)

existential: pick transition

universal: left or right

/540
X Y

f>q0 ~ (q1,92)

ignore
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MOTIVATION

Implementing the Decidability Result

+ Tool: MONA
+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow

+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games
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+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow
+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with E. Stafiniak)
How to determine the value of a position v in a general game?

« Both players play from v randomly a large number of times
+ Calculate the ratio of wins of each player

+ Problem: no way to look forward and choose actions
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UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo
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UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

Pick Max Upper Confidence

[In(n(v)+1)
% n(w)+1 /’\
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Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

Improving Random Player
+ Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good
+ In MoGo: good and bad patterns

 Problem: makes algorithm even slower

Results of Hints
+ Breakthrough: beat if possible ca. 70% improvement

« Gomoku: play near your stone ca. 80% improvement

Perspective: once a good hint is found, prove that the strategy is winning.
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How TO MAKE THE SOLVER FASTER?

Solver Requirements
(1) Obvious: evaluate formulas fast

(2) Repetition: evaluate the same formula on many structures
(3) Composition: structures change only slightly
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How TO MAKE THE SOLVER FASTER?

Solver Requirements
(1) Obvious: evaluate formulas fast

(2) Repetition: evaluate the same formula on many structures
(3) Composition: structures change only slightly

MSO is compositional:
r—[hk(m EBconnect %) _ Thk(Ql) 69connect Thk(%)
Using this requires multiple CNF-DNF conversions

Current Solver Architecture (toss.sourceforge.net)
+ FO assignments: represented directly
« MSO assignments: semi-symbolically

(leXA2eXA3¢X)Vv(1¢X)

+ Operations on MSO assignments: use SAT solver, CNF-DNF again
+ Are BDDs better? Unclear.
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« Establishing the winner is decidable for certain subclasses
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Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games

+ Possibly learn formulas from simulated plays

Extensions
+ Preconditions and postconditions in rewriting rules

+ Types of structures (based on bounded clique-width)
+ Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
« simple quantitative logics can be used

Thank You
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