(GAMES WITH STRUCTURED STATES

Fukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

LIAFA SEMINAR
Paris, 2010

1/17

OVERVIEW

Structure Rewriting

2/17

STRUCTURE REWRITING RULES

Rewriting Example

STRUCTURE REWRITING RULES

Rewriting Example

STRUCTURE REWRITING RULES

Rewriting Example

STRUCTURE REWRITING RULES

Rewriting Example

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRIRY,...,R0)=2

Embedding: ¢ is injective and R? (ay, ..., a,,) < R? (d(a1),...,0(a;,))

3/17

STRUCTURE REWRITING RULES

Rewriting Example

Relational Structures and Embeddings
o: A=(ARLRY,...,RY) - (BRIRY,...,R0)=2
Embedding: ¢ is injective and R? (ay, ..., a,,) < R? (d(a1),...,0(a;,))
Rewriting Definition
B=AL —> R/o]iff B= (AN c(L))URand,
for M ={(r,a) | a=0(l),re Pl forsomeleL} U {(a,a)|acA},
(bi,..., b)) €RP < (by,...,b,)eRor (M x ... x b, M) n R* + &.

(in the second case at least one b; ¢ 2A)
3/17

STRUCTURE REWRITING GAMES

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

4/17

STRUCTURE REWRITING GAMES

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R

4/17

STRUCTURE REWRITING GAMES

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:

« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R

Winning conditions:
« L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of o212 ... = (Unew Nizn Ais Unen Nizn R™)
+ Reach ¢: Player 0 wins if the play reaches 2(s.t. 2{ = ¢

STRUCTURE REWRITING GAMES

Game arena (of a two-player zero-sum game) is a directed graph with:
« vertices partitioned into positions of Player 0 and Player 1

+ edges labelled by rewriting rules

Two interpretations of £ — A:

« Existential: ey = A[L — 91/0], the player chooses the embedding ¢

o Universal: 25 = 2A[£ — 91], all occurrences of £ are rewritten to R
Winning conditions:

« L, (or temporal) formula y with MSO sentences for predicates, or

+ MSO formula ¢ to be evaluated on the limit of the play
Limit of o212 ... = (Unew Nizn Ais Unen Nizn R™)
+ Reach ¢: Player 0 wins if the play reaches 2(s.t. 2{ = ¢

Motivation: many questions are naturally defined as such games:
constraint satisfaction, model checking, graph measures, games people play

4/17

ExAMPLE GAME: GOMOKU (CONNECT-5)

5/17

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

ExAMPLE GAME: GOMOKU (CONNECT-5)

°++++++++°

,++++++++,

EXAMPLE GAME: GOMOKU (CONN ECT- 5)

OVERVIEW

Separated Games

6/17

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—R o2 o R 5

Not Separated: o—R 5 R 5

7117

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R
Not Separated:

Simple Rule £ — fR: A is separated and £ is a single tuple in relation

7117

SIMPLE STRUCTURE REWRITING

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated:
Not Separated:

Simple Rule £ — fR: A is separated and £ is a single tuple in relation

Example

7117

DECIDABILITY OF SIMPLE REWRITING GAMES

Logics
+ L,[MSO]: Temporal properties expressed in L, (subsumes LTL) with
properties of structures (states) expressed in MSO

+ lim MSO: Property of the limit structure expressed in MSO
Theorem

+ Let R be a finite set of (universal) simple structure rewriting rules,
« and ¢ be an L,[MSO] or lim MSO formula.

Then the set {m € R” : (lim)S(7) & ¢} is w-regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable.
The winner has a winning strategy of a simple form.

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k
+ @ representing disjoint sum
+ i < jto change colour of all
nodes from i to j
« ¢(i,) to add all pairs of
(i, j)-coloured nodes to e

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k
+ @ representing disjoint sum
+ i < jto change colour of all
nodes from i to j
« ¢(i,) to add all pairs of
(i, j)-coloured nodes to e

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k
+ @ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« ¢(i,) to add all pairs of
(i, j)-coloured nodes to e

7N

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k

+ @ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« ¢(i,) to add all pairs of

e(e,°)
(i, j)-coloured nodes to e i

7N

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

+ Leafs of different colours 1. ..k
+ @ representing disjoint sum

+ i < jto change colour of all

nodes from i to j ®
- S
« ¢(i,) to add all pairs of o e(e, o)
(i, j)-coloured nodes to e i
@
7N

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

« Leafs of different colours1...k

+ @ representing disjoint sum

e(e,)
+ i < jto change colour of all i
nodes from i to j ®
- S
« ¢(i,) to add all pairs of o e(e, o)
(i, j)-coloured nodes to e i
@
7N

o —eo — o ° L4

9/17

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

» Leafs of different colours1... k ° T °
+ @ representing disjoint sum e(s, o)
+ i < jto change colour of all i
nodes from i to j ®
- S
« ¢(i,) to add all pairs of o e(e, o)
(i, j)-coloured nodes to e i
52
7N

o —eo — o ° L4

PROOF: INTERPRETING A STRUCTURE IN A TREE

Description of how to build 2/ is a tree 7 (2() with:

» Leafs of different colours1... k ° T °
+ @ representing disjoint sum e(s, o)
+ i < jto change colour of all i
nodes from i to j ®
- S
« ¢(i,) to add all pairs of o e(e, o)
(i, j)-coloured nodes to e i
52
7N
o —eo — o ° L4

Theorem:
For every k there is an MSO-to-MSO interpretation Z such that
for all structures 2l of clique-width < k holds Z(7 (1)) = 2.

PROOF: SIMPLE REWRITING IN THE TREE

)

!

10/17

PROOF: SIMPLE REWRITING IN THE TREE

(::) e(2,0)

e(é,l)
e(i,s)

R @/®

SNN

2 3 R(0,1)

10/17

PROOF: SIMPLE REWRITING IN THE TREE

(::) e(2,0)

2 1o (1)
e(2,3)
ee/é
O—0O / N\ \
S 2 3 31
2<0
2 ° 4 0,1« 4
e(2,0)
R e(3,1)
O O e(2,3)
3 1 4 e

®
/ N\ AN

2 3 R(0,1)

10/17

PROOF: SIMPLE REWRITING IN THE TREE

(::) e(2,0)

2 1o (1)
e(2,3)
eB/@
O—0O / N\ \
S 2 3 31
20
2 KO\ 4 0,1« 4
e(2,0)
R e(3,1)
O O e(2,3)
3 1 4 o

®/
/ N\ AN

MSO-to-MSO interpretation: ¢ — v 2 3 R(0,1)

10/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

@
S —>f(X, Y)

X > g(X,Y)

Y- ¢(X,Y)

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X > g(X,Y) X Y

Y- ¢(X,Y)

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X > g(X,Y) X Y

Y- ¢(X,Y)

existential: pick transition

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X->g(X,Y) X, q Y,q

Y- ¢(X,Y)

existential: pick transition frq0 ~ (q1,92)

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

T ()
S —>f(X, Y)

O
X->g(X,Y) X, q Y,q

Y- ¢(X,Y)

existential: pick transition frq0 ~ (q1,92)

universal: left or right

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

¢ f>90
S—)f(X, Y)
® /
X—>g(X, Y) @
O
Y—>g(X, Y)

existential: pick transition frq0 ~ (q1,92)

universal: left or right

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

@®
Y - g(X, Y)

existential: pick transition

universal: left or right

f>90

%

f>q0 ~ (q1,92)

ignore

11/17

PROOF: FROM TREE TO ALTERNATING WORD AUTOMATA

O
S —>f(X, Y)

X > g(X,Y)

Y- ¢(X,Y)

existential: pick transition

universal: left or right

/540
X Y

f>q0 ~ (q1,92)

ignore

11/17

OVERVIEW

Simulation-Based Playing

12/17

MOTIVATION

Implementing the Decidability Result

+ Tool: MONA
+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow

+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games

13/17

MOTIVATION

Implementing the Decidability Result

+ Tool: MONA
+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow

+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with E. Stafiniak)

13/17

MOTIVATION

Implementing the Decidability Result

» Tool: MONA

+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow
+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with E. Stafiniak)
How to determine the value of a position v in a general game?

« Both players play from v randomly a large number of times

+ Calculate the ratio of wins of each player

13/17

MOTIVATION

Implementing the Decidability Result
+ Tool: MONA

+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
« Symbolic representation with BDDs
« Minimisation at each step

« Example: a simple tic-tac-toe game ~ memory overflow
+ Problems due to inefficient coding

« Bounded clique-width graphs not good for MONA
« Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with E. Stafiniak)
How to determine the value of a position v in a general game?

« Both players play from v randomly a large number of times
+ Calculate the ratio of wins of each player

+ Problem: no way to look forward and choose actions

13/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

14/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

14/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

e

14/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

e

14/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

Pick Max Upper Confidence

[In(n(v)+1)
% n(w)+1 /’\

14/17

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

e

i

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

e

i

UprPER CONFIDENCE BOUNDS FOR TREES

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there

+ History: encouraged by the success of MoGo

14/17

UCT FOR STRUCTURE REWRITING GAMES

Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

15/17

UCT FOR STRUCTURE REWRITING GAMES

Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

Improving Random Player
+ Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good

+ In MoGo: good and bad patterns

15/17

UCT FOR STRUCTURE REWRITING GAMES

Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

Improving Random Player
+ Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good
+ In MoGo: good and bad patterns

 Problem: makes algorithm even slower

15/17

UCT FOR STRUCTURE REWRITING GAMES

Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

Improving Random Player
+ Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good
+ In MoGo: good and bad patterns

 Problem: makes algorithm even slower

Results of Hints
+ Breakthrough: beat if possible ca. 70% improvement

« Gomoku: play near your stone ca. 80% improvement

15/17

UCT FOR STRUCTURE REWRITING GAMES

Problems
+ Fully random player is too general

+ Large number of formula evaluations (slow)

Improving Random Player
+ Hints: formulas which separate good and bad states (moves)
+ Example (Gomoku): connected group of stones is good
+ In MoGo: good and bad patterns

 Problem: makes algorithm even slower

Results of Hints
+ Breakthrough: beat if possible ca. 70% improvement

« Gomoku: play near your stone ca. 80% improvement

Perspective: once a good hint is found, prove that the strategy is winning.

15/17

How TO MAKE THE SOLVER FASTER?

Solver Requirements
(1) Obvious: evaluate formulas fast

(2) Repetition: evaluate the same formula on many structures
(3) Composition: structures change only slightly

16 /17

How TO MAKE THE SOLVER FASTER?

Solver Requirements
(1) Obvious: evaluate formulas fast

(2) Repetition: evaluate the same formula on many structures
(3) Composition: structures change only slightly

MSO is compositional:
r—[hk(m EBconnect %) _ Thk(Ql) 69connect Thk(%)

Using this requires multiple CNF-DNF conversions

16 /17

How TO MAKE THE SOLVER FASTER?

Solver Requirements
(1) Obvious: evaluate formulas fast

(2) Repetition: evaluate the same formula on many structures
(3) Composition: structures change only slightly

MSO is compositional:
r—[hk(m EBconnect %) _ Thk(Ql) 69connect Thk(%)
Using this requires multiple CNF-DNF conversions

Current Solver Architecture (toss.sourceforge.net)
+ FO assignments: represented directly
« MSO assignments: semi-symbolically

(leXA2eXA3¢X)Vv(1¢X)

+ Operations on MSO assignments: use SAT solver, CNF-DNF again
+ Are BDDs better? Unclear.

16 /17

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games

+ Possibly learn formulas from simulated plays

17 /17

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games

+ Possibly learn formulas from simulated plays

Extensions
+ Preconditions and postconditions in rewriting rules

+ Types of structures (based on bounded clique-width)
+ Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
« simple quantitative logics can be used

17 /17

CONCLUSIONS

Structure Rewriting Games
+ General model of games with structured states
« Establishing the winner is decidable for certain subclasses
+ Simulation can be used to play the games

+ Possibly learn formulas from simulated plays

Extensions
+ Preconditions and postconditions in rewriting rules

+ Types of structures (based on bounded clique-width)
+ Continuous dynamics can be added

« defined e.g. using R-structures and differential equations
« simple quantitative logics can be used

Thank You

17 /17

	Structure Rewriting
	Separated Games
	Simulation-Based Playing

