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Motivation

Look, | can do synthesis for that: Great, | have something very similar:

But the whole right side is just one state on the left!

Can we model states by arbitrary relational structures?
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Structure Transition Systems

Kripke Structures
}C = (V,Ea,Eb,...)

Finite Relational Structures

A= (AR,Rs,...)

Metafinite Structures

andf,f,... : A-R

Structure Transition Systems

Kands : V — (2,f)
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Discrete Structure Rewriting Rules

Rewriting Example

Relational Structures and Embeddings
o: A=(ARNRY,...,R}) — (BRP,RY,....R0)="D
Embedding: o is injective and R (a», ..., a,,) < RP (o(a),...,0(ay,))
Rewriting Definition
B =AL - R/o]iffB= (A~ o(L))URand,
forM ={(r,a) |a=0(l),repPforsomelel} U {(a,a)|acA},
(by,...,by,) €RY < (by,...,b,) e R¥or (M x ... x b,M) N R* + &.

(in the second case at least one b; ¢ 2)
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Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graph with:
- vertices partitioned into positions of Player 0 and Player 1
« edges labelled by rewriting rules

Two interpretations of £ — A:
« Existential: 2nexe = A[L — 9R/0], the player chooses the embedding o
+ Universal: 2next = A[ £ — 9], all occurrences of £ are rewritten to R

Winning conditions:
+ Lu (or temporal) formula ¢ with MSO sentences for predicates, or
+ MSO formula ¢ to be evaluated on the limit of the play
Limit of 2002020 ... = (Upen Nisn Air Unex Nisn R™)
+ Reach ¢: Player 0 wins if the play reaches 2 s.t. 2l = ¢

Motivation: many questions are naturally defined as such games:
constraint satisfaction, model checking, graph measures, fun games

7/56



Example Game: Gomoku (Connect-5)

8/56



Example Game: Gomoku (Connect-5)




Example Game: Gomoku (Connect-5)




Example Game: Gomoku (Connect-5)




Example Game: Gomoku (Connect-5)




Example Game: Gomoku (Connect-5)




Example Game: Gomoku (Connect-5)

Ixa.oxs( A\ GO A A R(Xi Xint) v C(Xj, Xj41) V
1<i<5 1<i<5 1<i<5

A YRELY) AC(y X)) v N y(R(xi,y) A C(Xix1,¥))))



Overview

Structure Rewriting Systems

Separated Rules and Decidability
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Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: o—Ff a R 0o

) )
g g

Not Separated: o—2Ff o F 5
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Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated:
Not Separated:

Simple Rule £ — fR: R is separated and £ is a single tuple in relation

Example
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Decidability of Simple Rewriting Games

Logics

* Ly[MSO]: Temporal properties expressed in Lu (subsumes LTL) with
properties of structures (states) expressed in MSO

+ lim MSO: Property of the limit structure expressed in MSO

Theorem

« Let R be a finite set of (universal) simple structure rewriting rules,
« and ¢ be an L,[MSO] or lim MSO formula.

Then theset {m e R¥ : (lim)S(m) = ¢} is w-regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable.
The winner has a winning strategy of a simple form.
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Proof: Interpreting a Structure in a Tree

Description of how to build 2l is a tree 7 (2) with:

« Leafs of different colours1...k
@ representing disjoint sum

+ i < jto change colour of all
nodes from i to j

« e(i, j) to add all pairs of
(i, j)-coloured nodes to e
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Proof: Interpreting a Structure in a Tree

Description of how to build 2l is a tree 7 (2) with:

« Leafs of different colours1...k
@ representing disjoint sum

e(s,®)
+ i < jto change colour of all !
nodes from j to j ®
- , R
- e(i,j) to add all pairs of o e(e, )
(i, j)-coloured nodes to e N
@
N
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Proof: Interpreting a Structure in a Tree

Description of how to build 2l is a tree 7 (2) with:

« Leafs of different colours 1... k . 1— .
@ representing disjoint sum e(e,0)
+ i < jto change colour of all !
nodes from j to j ®
- : R
- e(i,j) to add all pairs of o e(e, )
(i, j)-coloured nodes to e N
@
N

e — e — @ ° L4
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Proof: Interpreting a Structure in a Tree

Description of how to build 2l is a tree 7 (2) with:

« Leafs of different colours 1... k . 1— .
@ representing disjoint sum e(s, o)
+ i < jto change colour of all !
nodes from j to j ®
- : R
- e(i,j) to add all pairs of o e(e, )
(i, j)-coloured nodes to e N
@
N
e — 0 — o L] o

Theorem:
For every k there is an MSO-to-MSO interpretation Z such that
for all structures 21 of clique-width < k holds Z( 7 (2)) = 2L.
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Proof: Simple Rewriting in the Tree

()

!
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Proof: Simple Rewriting in the Tree

<:> e(2,0)

2 1 o e(3)
e(2,3)
R @/69
Ei /N N\
2 3 R(O,])
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Proof: Simple Rewriting in the Tree

2 L o e(3.1)
e(2,3)
-
®
i:i 7/ \
2 3 3«1

w(O—0Onw~
~O——C0o «
j o) j
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Proof: Simple Rewriting in the Tree

()

2 1

~O—0eo «

2
O
3

MSO-to-MSO interpretation: ¢ — ¢ 2 3 R(0,1)
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Proof: From Tree to Alternating Word Automata

i
S —f(X,Y)

O

X—-g(X,Y)

O
Y —» g(X, Y)
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Proof: From Tree to Alternating Word Automata

O

S—>f(X,Y)
O
X — g(X, Y)

O
Y —>g(X,Y)

existential: pick transition

universal: left or right

f, do
X Y

f,q0 — (q1,92)

ignore
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Motivation

Implementing the Decidability Result

+ Tool: MONA
+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
+ Symbolic representation with BDDs
+ Minimisation at each step

« Example: a simple tic-tac-toe game ~» memory overflow

+ Problems due to inefficient coding

+ Bounded clique-width graphs not good for MONA
+ Only universal interpretation decidable, must encode games
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Motivation

Implementing the Decidability Result

« Tool: MONA

+ Developed at BRICS since 1996 by Nils Klarlund and Anders Mgller
+ Symbolic representation with BDDs
+ Minimisation at each step

« Example: a simple tic-tac-toe game ~» memory overflow

+ Problems due to inefficient coding

+ Bounded clique-width graphs not good for MONA
+ Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with L. Stafiniak)
How to determine the value of a position v in a general game?
Two Approaches

+ UCT based algorithms
« Generate heuristic evaluation functions
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UCT: Upper Confidence Bounds for Trees

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there
+ History: encouraged by the success of MoGo
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UCT: Upper Confidence Bounds for Trees

Building a Tree during Random Plays
+ Idea: memorise first random moves, play minimax there
+ History: encouraged by the success of MoGo

Pick Max Upper Confidence

/In(n(v)+1)
C' n(W)+1 ///////////’T\\\\\\\\\\\
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Deriving Heuristic Evaluation Functions

Methods
+ Goal expansion and Type Normal Form

« Summing over conjuncts in existentially quantified conjunctions
+ Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals
(P(X)AP(y)AP(Z)AR(X, y)AR(y, 2) )V (P(x)AP(y) AP(Z)AC(x, y)AC(Y, 2))
¢

S0 (3+Ey1ermrten G+ aiernntrn D)+ Exieco (3+Zypyncin G+ Sapmncon D)
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(P(x)AP(y)AP(Z)AR(X,y)AR(y, 2) )V (P(x)AP(y) AP(2)AC(x, y)AC(Y, 2))
¢

S0 (3+Ey1e0rmrten G+ Zaiernntrn D)+ Exieco (3+Zypyncin G+ Sapemncon D)

Results vs. Fluxplayer | Toss Wins | Fluxplayer Wins | Tie  ieddepn)
Breakthrough 95% 5% 0%
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Deriving Heuristic Evaluation Functions

Methods
+ Goal expansion and Type Normal Form
« Summing over conjuncts in existentially quantified conjunctions
+ Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals
(P(X)AP(y)AP(Z)AR(X, y)AR(y, 2) )V (P(x)AP(y) AP(Z)AC(x, y)AC(Y, 2))
¢

S0 (3+Ey1ermrten G+ aiernntrn D)+ Exieco (3+Zypyncin G+ Sapmncon D)

Results vs. Fluxplayer | Toss Wins | Fluxplayer Wins | Tie wariabie dept
Breakthrough 95% 5% 0%
Connect4 45% 20% 35%
Connect5 0% 0% 100%

Pawn Whopping 60% 40% 0%

18/56
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Continuous Dynamics
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Continuous Rewriting
Metafinite structures: 2 = (A, Ry, ..., R, fi,...,fj) withf: A= R

Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
+ constraints: precondition, invariant, postcondition
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Continuous Rewriting

Metafinite structures: 2 = (A, Ry, ..., R, fi,...,fj) withf: A= R

Additional Parameters to a Rule:
+ dynamics: system of ordinary differential equations
« updates: equations assigning values on the right-hand side
+ constraints: precondition, invariant, postcondition
Logic
+ Monadic Second-Order Logic (MSO):
VX(x e XA (Vz,v(ze XAR(z,v) > veX)) > yeX)
- Real-valued terms with counting: 2 - x(3y(P(y) AR(x,y))) +f(x)
- Real quantification: 3a € R(a? - f(x) +a—-1=0) A (f(x) >2)
Semantics of Application
(1) All dynamics applies concurrently
(2) Many universal rules with trivial discrete part
(3) Single non-trivial discrete rewriting after continuous evolution
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Games with Continuous Dynamics

Moves: the player chooses
« the rule and a match
« the time from an interval

+ parameters for all rules from allowed intervals
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Games with Continuous Dynamics

Moves: the player chooses
« the rule and a match
« the time from an interval

+ parameters for all rules from allowed intervals

Payoffs
+ logics as described before
+ evaluated on the final state

» Example: value of f on the matched element
~» parameter optimisation
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Quantitative Logics
Standard u-Calculus
Quantitative u-Calculus
Model Checking on Linear Hybrid Systems
Model Checking on Increasing Tree Rewriting Systems
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The u-Calculus

Syntax:
pu=Pl-plorelovelOe| OoluXe|vX.e
Evaluation of uX.p(X):
set Xo = @ and compute X; 1 := @(X;) until X; 1 = X; (Knaster-Tarski)
Example:

Puntil Q := uX.(Q Vv (P A X))

Motivation for u-calculus:
+ The u-calculus is more expressive than LTL and CTL
+ Can express all bisimulation invariant MSO properties
+ The connection between p-calculus and parity games
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Parity Games

G=(V,WWEQ)andVvE + forallv e V

Player 0 wins G from vy when she has a strategy o so that for all strategies p
of PI. 1the minimal colour appearing infinitely often on 1, (0, p) is even.

25/56



Parity Games

G=(V,WWEQ)andVvE + forallv e V

25/56



Parity Games

G=(V,WWEQ)andVE + gforallv eV
o

25/56



Parity Games

G=(V,WWEQ)andVE + gforallv eV

25/56



Parity Games

G=(V,WWEQ)andVE + gforallv eV
o

25/56



Parity Games

G=(V,WWEQ)andVvE + forallv e V

Outcome: 1 won by Abélard since the lowest colour on the cycle is odd.
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Parity Games

G=(V,WWEQ)andVE + gforallv eV

Outcome: m won by Eloise since the lowest colour on the cycle is even.
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One or Two Colours

One Colour
Safety Games Reachability Games

Two Colours
Blichi Games

‘*@
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Parity Games and the u-Calculus

Model Checking Games e.g. MC[ Q, @] for Q and ¢ = uX.(P v &X)

Parity games are model checking games for Ly
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Overview

Quantitative Logics

Quantitative u-Calculus
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Quantitative Transition Systems

Quantitative Transition System (QTS):
§;2 = (l/I l;l Fﬁl ’?2! LR Fﬁ7)
Pi:V—>Re, notV—{T, L}

Example: QTS with quantitative predicates P and Q

8 11/2

5,0

2,000
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Quantitative u-Calculus

Syntax:
pu=Pl-glorplove|De| ColuX.@|vX.g
Semantics: Example:
- evaluation on QTS @
. [[(P]]K V- Reo iy
* A~ min

e [PAQ](v)=2
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Evaluation of D and &

Intuition:
e O~ inf
« O ~sup
« min and max for finitely branching systems

[OP](v) =1 [OP](v) = oo

Example:
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Evaluation of D and &

Intuition:
s O~ inf
« O ~sup
« min and max for finitely branching systems
Example: 0
()
ONORO, ONORONE
[OP](v) =1 [OPI(v) = oo
Formally:

» [0e]F(v) = sup,eelel™ (V')
* (ool (v) = infureve@]* (v)
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Evaluation of Fixed Points

Intuition:
« Lattice (F, <)
« F:={f : fisafunction from V to Re }
+ top element oo, bottom element —oo
» Theorem of Knaster and Tarski applies
Inductive evaluation of u:

go=0
[@]exga] for a successor ordinal,
B<al®le(xg,) for alimitordinal,

[uX.@]F = gy where gy = gy
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Evaluation of Fixed Points

Intuition:
« Lattice (F, <)
« F:={f : fisafunction from V to Re }
+ top element oo, bottom element —oo
» Theorem of Knaster and Tarski applies
Inductive evaluation of u:

go=0
[@]exga] for a successor ordinal,
B<al®le(xg,) for alimitordinal,

[uX.]F = gy where gy = gy
Formally:
 UXQ] = inf{f ¢ F £ = [0]%, )
- VXl =sup{f e F:f = [0, 1)
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Quantitative u-Calculus

Syntax: ¢ ==Pi[-@|lor@|love| Do ColuXelvX.g

Semantics:
Evaluation on quantitative transitions system, [@]* : V — Roo
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Quantitative u-Calculus

Syntax: ¢ ==Pi[-@|lor@|love| Do ColuXelvX.g

Semantics:
Evaluation on quantitative transitions system, [@]* : V — Roo

QTS 91 =(V,E,P,Q)
* [o ~y] =min{[e], [v]} 11/2
* [o vyl =max{[e], [v]}
* [C9] = sup[e](succ)
* [B¢] = inflp](succ)
« inductive evaluation of fixed
points over lattice (F, <) 2,000
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Basic Example in Quantitative u-Calculus

O O O O >
P =100 50 25 12.5
Q=1 2 4 8

Puntil Q := puX.(Q Vv (PAOX))
Inductive Evaluation:
* [P until Q]o(v) = —o0,
« [Puntil Qi(v) = Q(v),
+ [P until Q2(v) = max{Q(v), min{P(v), maxye,e{Q(w)}}
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Basic Example in Quantitative u-Calculus

O O O O >
P =100 50 25 12.5
Q=1 2 4 8

Puntil Q := puX.(Q Vv (PAOX))
Inductive Evaluation:
* [P until Q]o(v) = —o0,
« [Puntil Qi(v) = Q(v),
+ [P until Q2(v) = max{Q(v), min{P(v), maxye,e{Q(w)}}

Intuition: Value of P at the last time P > Q
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Overview

Quantitative Logics

Model Checking on Linear Hybrid Systems
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Linear Hybrid Systems

Finite representation of an infinite QTS
+ Variables y, ..., yx evolve in time, in v by % =6i(v)

« Transitions are labelled by triples (/, C, R)
+ Interval I: possible period of time to stay in v
- Vector C: interval constraints on the variables y
« Set R: variables to reset after the transition

Quantitative u-Calculus on LHS
p:u=yilPil-plonplove|Oel ColuXe|vX.e

Semantics defined on the represented QTS (where y; are predicates).

Example

[30,00)

P =00

[0.1]
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Main Result

Definition

A LHS is initialised if for each transition (v, /,w) and variable y;

6[(V) * 6,(W) = j€eR,
Intuition: Qu can be approximated on initialised LHS

Theorem

« Let IC be an initialised LHS over Q,
« and ¢ a quantitative u-calculus formula,
« and n > 0 an integer (approximation quality).

Itis decidable whether [@]"* = oo, [@]* = —oo, and else anumberr € Q can
be computed such that |[o]* - r| < 1.
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Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

38/56



Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

38/56



Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

38/56



Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

38/56



Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

38/56



Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

Outcome: p(m) =3- (3 +2) -1
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Interval Parity Games
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Interval Parity Games

An interval parity game G is played on an LHS with priorities in locations

Outcome: p(71) = oo since lowest priority on the cycle is 0

38/56



Model Checking Games for Qu
Model Checking Game MC[C, ¢]

Positions: (y, s), ¢ is a subformula of ¢, and s location of IC, or (—o0),(c0)

Eloise moves:

(¢5)
_—— (@, t), tesE
Py (~o0),5E =2

(uX.@,5) —— (@,5)

(X,s) —— (¢.s)
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Model Checking Games for Qu

Abélard moves:

(w,s)
(Yros) - (00, s) (o, l‘),tE_sE
(¢,5) (00),sE=&

(VX.(,D,S) - ((p,S)

X;s) —— (@:3)

Terminal Positions: (P;,s), (¥}, 5), (—o0), and (oo) with payoff accordingly
Priorities: Q(X, s) is even if X is a v-variable, Q(X, s) is odd otherwise;
priority chosen according to alternation level of X, all other positions get

alternation depth of ¢.
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Example Model Checking Game

MC[Q, @] for example Q and ¢ = uX.(OX Vv (yo A P))
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Using Interval Parity Games

Previous Result
For every formula ¢ in Qu, LHS IC,and v € K,
the value of MC[Q, @] from (¢, v) equals ] (v).

Problem with Discretisation (we approximate)

[0,0] [0,0]

Yo—1 Yo

After approximation and discretisation: Counter Parity Games
(only increments and resets), which we solve later.
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Overview

Quantitative Logics

Model Checking on Increasing Tree Rewriting Systems
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Increasing Tree-Rewriting Rules

Increasing tree-rewriting rules have of the form

R
r=P<—/\ or r= P « R,

R Rk
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Increasing Tree-Rewriting Rules

Increasing tree-rewriting rules have of the form

R
r=P<—/\ or r= P « R,

R Rk

Applying the rule r to a tree t replaces every P-leaf.

t r(t)

/?1 .../?k /?1 .../?k /?1 .../?k
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Increasing Tree-Rewriting Systems

R - a set of increasing tree-rewriting rules
Definition

An increasing tree-rewriting system (ITRS) consists of
- afinite set Q of states

+ alabelled edge relation E € Q x R x Q
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Increasing Tree-Rewriting Systems

R - a set of increasing tree-rewriting rules

Definition

An increasing tree-rewriting system (ITRS) consists of
- afinite set Q of states

+ alabelled edge relation E € Q x R x Q

An ITRS induces a tree-labelled transition system

Gr, Iararor(P)

Go, ror2ror(P)

45/56



The quantitative u-calculus for ITRS

Definition (MSO counting term)
An MSO counting term has the form #;¢(x), where x = free(o).

[t ()™ = [{a | % = o(a)}
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The quantitative u-calculus for ITRS

Definition (MSO counting term)
An MSO counting term has the form #;¢(x), where x = free(o).

[t ()™ = [{a | % = o(a)}

Definition (Qu[#MSQ])

As Qu but with MSO counting terms as quantitative predicates.

Yu=tzo(X) [ X[ lprplovy| O] OS¢ |uXy|vXy

Evaluated on the induced tree-labelled transition systems.
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Examples

° ll)(. ##X,)G ()() \Y% <;>)(

a ab abb
| |

aa aba abba
|

abaa abbaa

abbaaa
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Examples

i ll)(. ##X,)G ()() Vv <;>)(

Step 1
1 1 1
a ab abb
2 l 2 J 2
aa aba abba
3 J 3
abaa abbaa
4

abbaaa
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Examples

* ll)(. ##X,)G ()() Vv <;>)(

Step 2
2 2 2
a ab abb
2 l 3 J 3
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° ll)(. ##X,)G ()() \Y% <;>)(

Step 3
2 3 3
a ab abb
Zl BJ 4
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° ll)(. ##X,)G ()() \Y% <;>)(

Step 4
3 3 4
a ab abb
Zl 3J 4
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° ll)(. ##X,)G ()() \Y% <:>)(

Step 5
3 4 5
a ab abb
Zl BJ 4
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° ll)(. ##X,)G ()() \Y% <:>)(

Step 6
4 5 6
a ab abb
Zl BJ 4
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° ll)(. ##X,)G ()() \Y% <:>)(

Step w
o0 o0 o0
a ab abb
Zl 3J 4
aa aba abba
;| .
abaa abbaa
4

abbaaa
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Examples

° Ll)(. ##X'Fzﬂ ()() \Y <:>)(
Maximal number of as seen on any path

o UX. #x (Pa(x) Ay (Y < x APy(Xx))) vOX
Maximal number of as after a b seen on any path

o VX. #xPa(x) AOX
Minimal number of as seen on every path
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Main Result

Theorem
Lety € Qu[#MSO] and T be an ITRS. Then [¢]” can be computed.
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Main Result

Theorem

Lety € Qu[#MSO] and T be an ITRS. Then [@]” can be computed.

Proof steps:

+ Use model-checking games ~» quantitative parity games
Problem: infinite arena as trees have unbounded size

« Introduce counters to evaluate counting terms
~» counter parity games with a finite arena

« Solve counter parity games

Techniques: MSO counting terms decomposition, counter parity games

48/56



Counters for ITRS

Idea:

+ In general, the size of the increasing trees is unbounded
+ Instead of the trees store the number of x satisfying counting terms
+ Update these numbers on application of tree-rewriting rules
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+ In general, the size of the increasing trees is unbounded
+ Instead of the trees store the number of x satisfying counting terms
+ Update these numbers on application of tree-rewriting rules

Problems:

+ A subset of the variables might be assigned to a future tree
« Whether an assignment is valid at present might depend on the future
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Counters for ITRS

Idea:

+ In general, the size of the increasing trees is unbounded
+ Instead of the trees store the number of x satisfying counting terms
+ Update these numbers on application of tree-rewriting rules

Problems:

+ A subset of the variables might be assigned to a future tree

« Whether an assignment is valid at present might depend on the future
Example

Letp = #X(Pa(x) AVy(x <y — ﬁPb(y))).
The counter for ba is 1 but after adding a b it needs to be reset.

49/56



Decomposition

Theorem
R
Fort = / \ , given only k and ¢(x) € MSO, one can compute
t ot
O = {(po(X0), - @x(Xk)) | (X0, -+, Xy ) partition of x }
suchthatqr(e;) < gqr(¢) and

R & @o(a®)

teop(a) — for (exactly) one ¢ € Q.

beei(@) vt (@)
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Decomposition of Counting Terms

Theorem

Fort = / N\, , given only k, a counting term #5¢(x ), and a partition
t_l ces k
[x]; = (X0, -+, X;) of X, one can compute

Wz, = {(10(Xo), (X)) | (Ko, %1) = [X]1}
such that qr(t;) < qr(¢) and

[#z0(¥)] = > > [#z,To(X0) ] - [z, ()17 - [, T ()]
(x1ie{[x]1} Te¥,
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Counting Terms on ITRS

A run of an ITRS has the form:

I () I
@ = /N R
Q'I.“QI
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Counting Terms on ITRS

A run of an ITRS has the form:

I Q I
% % /\ o
Qi Q

Q

« After a single step decomposition of #;¢(x):

> (To,Q)- (T1,r”---r1(Q1)) e (T/,f”“-r](Q,))
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Counting Terms on ITRS

A run of an ITRS has the form:

I Q I
@ 8 /\ s
O1“'QI

 Next step:
Z (T1’rn...r2(Q1)) e (T//r”...rz(ol))

L (e, (Q])) - (1™ 1(Q))
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Counting Terms on ITRS

A run of an ITRS has the form:

I Q I
@ 8 /\ s
O1“'QI

 Next step:

Z (T1,r”---r2(Q1)) PPN (T// r”...rz(Ql))
« Products of finite length ~~ finitely many
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Counting Terms on ITRS

A run of an ITRS has the form:

) Q Q
& 5 /N s
Q- Q
Q Qn,
 Next step:

D (T1,r”---r2(Q1)) e (T,,r”---rz(Q,))
+ Products of finite length ~ finitely many
« It suffices to know the number of occurrences of each summand
+ Such counters can be updated given a rule r;
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Counting Terms on ITRS

A run of an ITRS has the form:

) Q Q
A s
Q- Q
Q Qn,
 Next step:

D (T1,r”---r2(Q1)) e (T,,r”---rz(Q,))
+ Products of finite length ~ finitely many
« It suffices to know the number of occurrences of each summand
+ Such counters can be updated given a rule r;
~ reduces MC games to Counter Parity Games

52/56



Counter Parity Games

Counter Parity Game (CPG) is a quantitative parity game:
+ edges labelled with affine counter-update functions f: ¢ — Ac + B
« terminal vertices labelled by a payoff function A = +¢;

Players: maximiser (Maxi) and minimiser (Mini)

Infinite plays payoff: oo, if parity is satisfied, otherwise —co
Finite plays payoff: A atterminal
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Counter Parity Games

Counter Parity Game (CPG) is a quantitative parity game:
+ edges labelled with affine counter-update functions f: ¢ — Ac + B
« terminal vertices labelled by a payoff function A = +¢;

Players: maximiser (Maxi) and minimiser (Mini)

Infinite plays payoff: oo, if parity is satisfied, otherwise —co
Finite plays payoff: A atterminal

Example

Solution: through games with imperfect recall
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Overview

Summary

54/56



What we Have

Model
« Structure transition systems with rewriting transitions

+ Logics: first- and monadic second-order
fixed-points, counting and some temporal operators

+ Continuous dynamics by ODEs, merged for universal rules

+ Games with payoffs defined by counting terms
Theorems

» Decidability of L,[MSO] on separated games

« Approximability of Qu on finite initialised linear hybrid systems

« Decidability of Qu[#MSO] on separated games
Implementation

+ Model is implemented with basic model checking

« Games can be played and heuristics are generated

« Dynamics is simulated but very naive
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What we Wish

What is not there
+ More advanced model checking
+ Continuous dynamics with better ODE solvers
« Game playing with good continuous parameter search

BIOCHAM...
« Is discrete rewriting of any use?
» How about games instead of logic sometimes?
+ Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

56/56



What we Wish

What is not there
+ More advanced model checking
+ Continuous dynamics with better ODE solvers
« Game playing with good continuous parameter search

BIOCHAM...
« Is discrete rewriting of any use?
» How about games instead of logic sometimes?
+ Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

Thank You
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