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Motivation

Look, I can do synthesis for that:

2

10

1

Great, I have something very similar:

But the whole right side is just one state on the left!

Can wemodel states by arbitrary relational structures?
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Structure Transition Systems

Kripke Structures
K = (V , Ea, Eb, . . .)

Finite Relational Structures

A = (A,R1,R2, . . .)

Meta�nite Structures

A and f1, f2, . . . ∶ A→ R

Structure Transition Systems

K and s ∶ V → (A, f)
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Discrete Structure Rewriting Rules

Rewriting Example

a b

R

a b
R

Pa Pb Pb

R

R

Relational Structures and Embeddings

σ ∶ A = (A,RA1 ,RA2 , . . . ,RAk ) → (B,RB1 ,RB2 , . . . ,RBk ) =B

Embedding: σ is injective and RAi (a1, . . . ,ari) ⇔ RBi (σ(a1), . . . ,σ(ari))
Rewriting De�nition

B = A[L→ R/σ] i� B = (A∖ σ(L))∪̇R and,
forM = {(r,a) ∣ a = σ(l), r ∈ PRl for some l ∈ L} ∪ {(a,a) ∣ a ∈ A},

(b1, . . . ,bri) ∈ RBi ⇔ (b1, . . . ,bri) ∈ RRi or (b1M × . . .× briM) ∩ RAi ≠ ∅.
(in the second case at least one bj ∉ A)
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Structure Rewriting Games

Game arena (of a two-player zero-sum game) is a directed graphwith:
• vertices partitioned into positions of Player 0 and Player 1
• edges labelled by rewriting rules

Two interpretations of L→ R:
• Existential: Anext = A[L→ R/σ], the player chooses the embedding σ
• Universal: Anext = A[L→ R], all occurrences of L are rewritten toR

Winning conditions:
• Lµ (or temporal) formulaψwithMSO sentences for predicates, or
• MSO formula φ to be evaluated on the limit of the play
Limit ofA0A1A2 . . . = (⋃n∈N⋂i≥n Ai, ⋃n∈N⋂i≥n RAi)

• Reach φ: Player 0wins if the play reachesA s.t. A ⊧ φ

Motivation:many questions are naturally de�ned as such games:
constraint satisfaction, model checking, graph measures, fun games
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Example Game: Gomoku (Connect–5)

S

B B
S

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B

B

B B B B B B

B B BB BB

∃x1 . . . x5( ⋀
1≤i≤5

G(xi) ∧ ( ⋀
1≤i≤5

R(xi , xi+1) ∨ ⋀
1≤i≤5

C(xi , xi+1)∨

⋀
1≤i≤5

∃y(R(xi , y) ∧ C(y, xi+1)) ∨ ⋀
1≤i≤5

∃y(R(xi , y) ∧ C(xi+1, y))))
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Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations
(Courcelle, Engelfriet, Rozenberg, 1991)

Separated: R a R

Not Separated: R R

Simple Rule L→ R:R is separated and L is a single tuple in relation

Example

a b

R

a b
R

Pa Pb Pb

R

R
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Decidability of Simple Rewriting Games

Logics
• Lµ[MSO]: Temporal properties expressed in Lµ (subsumes LTL) with
properties of structures (states) expressed in MSO

• limMSO: Property of the limit structure expressed in MSO

Theorem

• Let R be a �nite set of (universal) simple structure rewriting rules,
• and φbe an Lµ[MSO] or limMSO formula.

Then the set {π ∈ Rω ∶ (lim)S(π) ⊧ φ} is ω-regular.

Corollary

Establishing thewinner of (universal) �nite simple rewriting games is decidable.
The winner has a winning strategy of a simple form.

11 /56



Proof: Interpreting a Structure in a Tree

Description of how to buildA is a tree T (A)with:

• Leafs of di�erent colours 1 . . . k
• ⊕ representing disjoint sum
• i ← jto change colour of all
nodes from i to j

• e(i, j) to add all pairs of
(i, j)-coloured nodes to e

● ●● ● ●●

⊕

e(●,●)●

⊕

e(●,●)

● ← ●

Theorem:
For every k there is an MSO-to-MSO interpretation I such that
for all structuresA of clique-width ≤ k holds I(T (A)) ≅ A.
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Proof: Simple Rewriting in the Tree

S

2

3

0

1

R

2

3

0

1

4

4

R

MSO-to-MSO interpretation: φ→ ψ

S

2

⊕

3

⊕
e(2, 3)
e(3, 1)
e(2, 0)

R(0, 1)3← 1
2← 0
0, 1← 4
e(2, 0)
e(3, 1)
e(2, 3)

2

⊕

3

⊕

R(0, 1)
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Proof: From Tree to AlternatingWord Automata

⋮

S → f(X,Y)

X → g(X,Y)

Y → g(X,Y)

existential: pick transition

universal: left or right

S,q0

f ,q0

X Y

f ,q0

X,q1 Y,q2

f ,q0

X Y,q2

f ,q0

g Y,q2

X Y

f ,q0

g g,q2

X Y X Y
. . .. . .

f ,q0 → (q1,q2)

ignore

14/56
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Motivation

Implementing the Decidability Result

• Tool:MONA
• Developed at BRICS since 1996 by Nils Klarlund and Anders Møller
• Symbolic representation with BDDs
• Minimisation at each step

• Example: a simple tic-tac-toe game↝memory over�ow
• Problems due to ine�cient coding

• Bounded clique-width graphs not good for MONA
• Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with Ł. Sta�niak)

How to determine the value of a position v in a general game?

Two Approaches
• UCT based algorithms
• Generate heuristic evaluation functions
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UCT: Upper Con�dence Bounds for Trees

Building a Tree during Random Plays
• Idea:memorise �rst randommoves, playminimax there
• History: encouraged by the success ofMoGo

. . . . . .

Pick Max Upper Con�dence

C ⋅
√

ln(n(v)+1)
n(w)+1

. . . . . .
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Deriving Heuristic Evaluation Functions

Methods
• Goal expansion and Type Normal Form
• Summing over conjuncts in existentially quanti�ed conjunctions
• Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

(P(x)∧P(y)∧P(z)∧R(x, y)∧R(y, z))∨(P(x)∧P(y)∧P(z)∧C(x, y)∧C(y, z))

↝

∑x∣P(x) ( 1
8+∑y∣P(y)∧R(x,y)( 1

4+∑z∣P(z)∧R(y,z) 1))+∑x∣P(x) ( 1
8+∑y∣P(y)∧C(x,y)( 1

4+∑z∣P(z)∧C(y,z) 1))

Results vs. Fluxplayer

(variable depth)Toss Wins Fluxplayer Wins Tie
Breakthrough 95% 5% 0%
Connect4 45% 20% 35%
Connect5 0% 0% 100%

PawnWhopping 60% 40% 0%
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Continuous Rewriting

Meta�nite structures: A = (A,R1, . . . ,Rk, f1, . . . , fl)with fi ∶ A→ R

Additional Parameters to a Rule:
• dynamics: system of ordinary di�erential equations
• updates: equations assigning values on the right-hand side
• constraints: precondition, invariant, postcondition

Logic
• Monadic Second-Order Logic (MSO):

∀X(x ∈ X ∧ (∀z,v(z ∈ X ∧ R(z,v) → v ∈ X)) → y ∈ X)
• Real-valued terms with counting: 2 ⋅ χ(∃y(P(y) ∧ R(x, y))) + f(x)
• Real quanti�cation: ∃a ∈ R(a2 ⋅ f(x) + a − 1 = 0) ∧ (f(x) > 2)

Semantics of Application
(1) All dynamics applies concurrently
(2) Many universal rules with trivial discrete part
(3) Single non-trivial discrete rewriting after continuous evolution
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Games with Continuous Dynamics

Moves: the player chooses
• the rule and amatch
• the time from an interval
• parameters for all rules from allowed intervals

Payo�s
• logics as described before
• evaluated on the �nal state
• Example: value of f on the matched element
↝ parameter optimisation
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The µ-Calculus

Syntax:

φ ∶∶= Pi ∣ ¬φ ∣ φ∧ φ ∣ φ∨ φ ∣ ◻ φ ∣ ◇ φ ∣ µX.φ ∣ νX.φ

Evaluation of µX.φ(X):
set X0 = ∅ and compute Xi+1 ∶= φ(Xi) until Xi+1 = Xi (Knaster-Tarski)

Example:
P until Q ∶= µX.(Q ∨ (P ∧◇X))

Motivation for µ-calculus:
• The µ-calculus is more expressive than LTL and CTL
• Can express all bisimulation invariant MSO properties
• The connection between µ-calculus and parity games

24/56



Parity Games

G = (V ,V0,V1, E, Ω) and vE ≠ ∅ for all v ∈ V

1

11

0

2 1

Player 0 wins G from v0 when she has a strategy σ so that for all strategies ρ
of Pl. 1 the minimal colour appearing in�nitely often on πv0(σ,ρ) is even.
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Parity Games

G = (V ,V0,V1, E, Ω) and vE ≠ ∅ for all v ∈ V

1

111

0

2 1

Outcome: πwon by Abélard since the lowest colour on the cycle is odd.
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Parity Games

G = (V ,V0,V1, E, Ω) and vE ≠ ∅ for all v ∈ V

1

11

0

2 1

0

2 1

Outcome: πwon by Eloïse since the lowest colour on the cycle is even.
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One or Two Colours

One Colour
Safety Games

0

0

00

00

Two Colours
Büchi Games

1

0

1

Reachability Games

1

1

11

11

Co-Büchi Games

2

1

2
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Parity Games and the µ-Calculus

Model Checking Games e.g. MC[Q,φ] forQ and φ = µX.(P ∨◇X)

Q

a

0

b

1

µX.(P∨◇X),a

P∨◇X,aP,a
0

◇X,aX,b X,a

P∨◇X,b

P,b
1

◇X,b 0

µX.(P∨◇X),b

Parity games are model checking games for Lµ
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Quantitative Transition Systems

Quantitative Transition System (QTS):

Q = (V , E,P1,P2, . . . ,Pn)

Pi ∶ V → R∞, not V → {⊺,�}

Example: QTS with quantitative predicates P and Q

5,0

1,1/2

2,1000
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Quantitative µ-Calculus

Syntax:

φ ∶∶= Pi ∣ ¬φ ∣ φ∧ φ ∣ φ∨ φ ∣ ◻ φ ∣ ◇ φ ∣ µX.φ ∣ νX.φ

Semantics:
• evaluation on QTS
• JφKK ∶ V → R∞
• ∧ ↝ min
• ∨ ↝ max

Example:

v

2,4

JP ∧ QK(v) = 2
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Evaluation of ◻ and◇

Intuition:
• ◻ ↝ inf
• ◇↝ sup
• min and max for �nitely branching systems

Example:
v

1 2 2

J◻PK(v) = 1

v

1 2 3 . . .

J◇PK(v) = ∞

Formally:
• J◇φKK(v) = supv′∈vEJφKK(v′)
• J◻φKK(v) = infv′∈vEJφKK(v′)
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Evaluation of Fixed Points

Intuition:
• Lattice (F ,≤)
• F ∶= {f ∶ f is a function from V toR∞}
• top element∞, bottom element −∞
• Theorem of Knaster and Tarski applies

Inductive evaluation of µ:

g0 = 0

gα = { JφKε[X←gα−1] for α successor ordinal,
limβ<αJφKε[X←gβ] for α limit ordinal,

JµX.φKKε = gγ where gγ = gγ+1

Formally:
• JµX.φKKε = inf{f ∈ F ∶ f = JφKKε[X←f]}
• JνX.φKKε = sup{f ∈ F ∶ f = JφKKε[X←f]}
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Quantitative µ-Calculus

Syntax: φ ∶∶= Pi ∣ ¬φ ∣ φ∧ φ ∣ φ∨ φ ∣ ◻ φ ∣ ◇ φ ∣ µX.φ ∣ νX.φ

Semantics:
Evaluation on quantitative transitions system, JφKK ∶ V → R∞

• Jφ∧ψK = min{JφK, JψK}
• Jφ∨ψK = max{JφK, JψK}
• J◇φK = supJφK(succ)
• J◻φK = infJφK(succ)
• inductive evaluation of �xed
points over lattice (F ,≤)

QTSQ1 = (V , E,P,Q)

1 2

3

5,0

1,1/2

2,1000
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Basic Example in Quantitative µ-Calculus

P = 100
Q = 1

50
2

25
4

12.5
8

P until Q ∶= µX.(Q ∨ (P ∧◇X))

Inductive Evaluation:
• JP until QK0(v) = −∞,
• JP until QK1(v) = Q(v),
• JP until QK2(v) = max{Q(v),min{P(v),maxw∈vE{Q(w)}}
• . . .

Intuition: Value of P at the last time P > Q
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Linear Hybrid Systems

Finite representation of an in�nite QTS
• Variables y1, . . . , yk evolve in time, in v by dyi

dt = δi(v)
• Transitions are labelled by triples (I,C,R)

• Interval I: possible period of time to stay in v
• Vector C: interval constraints on the variables y
• Set R: variables to reset after the transition

Quantitative µ-Calculus on LHS

φ ∶∶= yj ∣ Pi ∣ ¬φ ∣ φ∧ φ ∣ φ∨ φ ∣ ◻ φ ∣ ◇ φ ∣ µX.φ ∣ νX.φ

Semantics de�ned on the represented QTS (where yj are predicates).

Example

v0

P = −∞

v1

P = ∞

[0, 1]

[30,∞)

R = {0},y0 ∈ [3, 4]
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Main Result

De�nition

A LHS is initialised if for each transition (v, l,w) and variable yi

δi(v) ≠ δi(w) Ô⇒ i ∈ Rl

Intuition: Qµ can be approximated on initialised LHS

Theorem

• LetK be an initialised LHS overQ,
• and φa quantitative µ-calculus formula,
• and n > 0 an integer (approximation quality).

It is decidable whether JφKK = ∞, JφKK = −∞, and else a number r ∈ Q can
be computed such that ∣JφKK − r∣ < 1

n .
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Interval Parity Games

An interval parity game G is played on an LHSwith priorities in locations

1

1

1

1

3 ⋅ y0 − 1

3 ⋅ y0 − 1

0

2 1

[0, 12]

[0, 12]

[2,2]

[2,2]

[1,1]

[1,1] [1,1]

[1,1]

[1,1]

00

2 1

[1,1][1,1] [1,1]

[1,1]

Outcome: p(π) = ∞ since lowest priority on the cycle is 0
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Model Checking Games for Qµ

Model Checking GameMC[K,φ]

Positions: (ψ, s),ψ is a subformula of φ, and s location ofK, or (−∞),(∞)

Eloïse moves:

(ψ ∨ φ, s)
(ψ, s)

(φ, s)
(◇φ, s)

(φ, t), t ∈ sE
(−∞), sE = ∅

(µX.φ, s) (φ, s)

(X, s) (φ, s)
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Model Checking Games for Qµ

Abélard moves:

(ψ ∧ φ, s)
(ψ, s)

(φ, s)
(◻φ, s)

(φ, t), t ∈ sE
(∞), sE = ∅

(νX.φ, s) (φ, s)

(X, s) (φ, s)

Terminal Positions: (Pi, s),(yj, s),(−∞), and (∞)with payo� accordingly

Priorities: Ω(X, s) is even if X is a ν-variable, Ω(X, s) is odd otherwise;
priority chosen according to alternation level of X, all other positions get
alternation depth of φ.
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Example Model Checking Game

MC[Q,φ] for exampleQ and φ = µX.(◇X ∨ (y0 ∧ P))

µX.(◇X∨(y0∧P)),v0

◇X∨((y0∧P),v0y0∧P,v0

y0

−∞ ◇X,v0

X,v1

[0,1]

µX.(◇X∨(y0∧P)),v1

◇X∨((y0∧P),v1

◇X,v1

X,v0

y0∧P,v1

y0

∞

R={0},[30,∞)
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Using Interval Parity Games

Previous Result
For every formula φ in Qµ, LHSK, and v ∈ K,
the value of MC[Q,φ] from (φ,v) equals JφKK(v).

Problemwith Discretisation (we approximate)

v0

v1v2

y0 − 1

v3

−y0

[0, 1]
[0, 0] [0, 0]

After approximation and discretisation: Counter Parity Games
(only increments and resets), which we solve later.
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Increasing Tree-Rewriting Rules

Increasing tree-rewriting rules have of the form

r = P ←
R

R1 ⋯ Rk

or r = P ← R,

Applying the rule r to a tree t replaces every P-leaf.
t

P P P

↝

r(t)

R R R

R1 ⋯Rk R1 ⋯Rk R1 ⋯Rk
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Increasing Tree-Rewriting Systems

R – a set of increasing tree-rewriting rules

De�nition

An increasing tree-rewriting system (ITRS) consists of
• a �nite set Q of states
• a labelled edge relation E ⊆ Q ×R× Q

An ITRS induces a tree-labelled transition system

q0

q1

q2

r01 r12r21

r20
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R – a set of increasing tree-rewriting rules

De�nition

An increasing tree-rewriting system (ITRS) consists of
• a �nite set Q of states
• a labelled edge relation E ⊆ Q ×R× Q

An ITRS induces a tree-labelled transition system

q0

q1

q2

r01 r12r21

r20

↝ q0,P

q1, r01(P)

q2, r12r01(P) q0, r20r12r01(P)

q1, r21r12r01(P)
r01 r12

r20

r21 ⋯
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The quantitative µ-calculus for ITRS

De�nition (MSO counting term)

An MSO counting term has the form #xφ(x), where x = free(φ).

⟦#xφ(x)⟧A = ∣{a ∣ A ⊧ φ(a)}∣

De�nition (Qµ[#MSO])
As Qµ but with MSO counting terms as quantitative predicates.

ψ ∶∶= #xφ(x) ∣ X ∣ ¬ψ ∣ ψ ∧ψ ∣ ψ ∨ψ ∣ ◻ψ ∣ ◇ψ ∣ µX.ψ ∣ νX.ψ

Evaluated on the induced tree-labelled transition systems.
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Examples

• µX. #xPa(x) ∨◇X

Maximal number of as seen on any path

a

aa

ab

aba

abaa

abb

abba

abbaa

abbaaa

⋯
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Maximal number of as seen on any path

Step 1

a

aa

ab

aba

abaa

abb

abba

abbaa

abbaaa

⋯
1

2

1

2

3

1

2

3

4
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• µX. #xPa(x) ∨◇X

Maximal number of as seen on any path

Step 4

a
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abb

abba

abbaa

abbaaa

⋯
3

2

3
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4
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Examples

• µX. #xPa(x) ∨◇X

Maximal number of as seen on any path

Step 5

a

aa

ab

aba

abaa

abb

abba

abbaa

abbaaa

⋯
3

2

4

3

3

5

4

4

4
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Examples

• µX. #xPa(x) ∨◇X

Maximal number of as seen on any path

Step 6

a

aa

ab

aba

abaa

abb

abba

abbaa

abbaaa

⋯
4

2

5

3

3

6

4

4

4
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Examples

• µX. #xPa(x) ∨◇X

Maximal number of as seen on any path

Step ω

a

aa

ab

aba

abaa

abb

abba

abbaa

abbaaa

⋯
∞

2

∞

3

3

∞

4

4

4
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Examples

• µX. #xPa(x) ∨◇X
Maximal number of as seen on any path

• µX. #x (Pa(x) ∧ ∃y(y < x ∧ Pb(x))) ∨◇X
Maximal number of as after a b seen on any path

• νX. #xPa(x) ∧ ◻X
Minimal number of as seen on every path
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Main Result

Theorem

Let ψ ∈ Qµ[#MSO] and T be an ITRS. Then ⟦ψ⟧T can be computed.

Proof steps:

• Use model-checking games↝ quantitative parity games
Problem: in�nite arena as trees have unbounded size

• Introduce counters to evaluate counting terms
↝ counter parity gameswith a �nite arena

• Solve counter parity games

Techniques: MSO counting terms decomposition, counter parity games
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Counters for ITRS

Idea:

• In general, the size of the increasing trees is unbounded
• Instead of the trees store the number of x satisfying counting terms
• Update these numbers on application of tree-rewriting rules

Problems:

• A subset of the variables might be assigned to a future tree
• Whether an assignment is valid at present might depend on the future
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Counters for ITRS

Idea:

• In general, the size of the increasing trees is unbounded
• Instead of the trees store the number of x satisfying counting terms
• Update these numbers on application of tree-rewriting rules

Problems:

• A subset of the variables might be assigned to a future tree
• Whether an assignment is valid at present might depend on the future
Example
Let φ = #x(Pa(x) ∧ ∀y(x < y→ ¬Pb(y))).
The counter for ba is 1 but after adding a b it needs to be reset.
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Decomposition

Theorem

For t =
R

t1 ⋯ tk

, given only k and φ(x) ∈ MSO, one can compute

Φ = {(φ0(x0),⋯,φk(xk)) ∣ (x0,⋯, xk) partition of x}

such that qr(φi) ≤ qr(φ) and

t ⊧ φ(a) ⇐⇒

R ⊧ φ0(a0)

t1 ⊧ φ1(a1) ⋯ tk ⊧ φk(ak)

for (exactly) one φ ∈ Φ.
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Decomposition of Counting Terms

Theorem

For t =
Q

t1 ⋯ tk

, given only k, a counting term #xφ(x), and a partition

[x]l = (x0,⋯, xl) of x, one can compute

Ψ[x]l = {(τ0(x0),⋯, τl(xl)) ∣ (x0,⋯, xl) = [x]l}

such that qr(τi) ≤ qr(φ) and

⟦#xφ(x)⟧t = ∑
[x]l∈{[x]l}

∑
τ∈Ψ[x]l

⟦#x0τ0(x0)⟧
tQ ⋅ ⟦#x1τ1(x1)⟧

t1 ⋅ . . . ⋅ ⟦#xlτl(xl)⟧
tl .
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Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• After a single step decomposition of #xφ(x):

(τ1, rn⋯r2(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r2(Ql))∑

• Products of �nite length↝ �nitely many
• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri
↝ reduces MC games to Counter Parity Games

52/56



Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• After a single step decomposition of #xφ(x):

(τ1, rn⋯r1(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r1(Ql))∑ (τ0,Q)⋅

• Products of �nite length↝ �nitely many
• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri
↝ reduces MC games to Counter Parity Games

52/56



Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• Next step:

(τ1, rn⋯r2(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r2(Ql))∑

∑(τ′1, rn⋯r2(Q1
1)) ⋅ ⋯ ⋅ (τ′k, r

n⋯r2(Q1
k))

• Products of �nite length↝ �nitely many
• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri
↝ reduces MC games to Counter Parity Games

52/56



Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• Next step:

(τ1, rn⋯r2(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r2(Ql))∑
• Products of �nite length↝ �nitely many

• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri
↝ reduces MC games to Counter Parity Games

52/56



Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• Next step:

(τ1, rn⋯r2(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r2(Ql))∑
• Products of �nite length↝ �nitely many
• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri

↝ reduces MC games to Counter Parity Games

52/56



Counting Terms on ITRS

A run of an ITRS has the form:

Q0
r0→

Q

Q1 ⋯ Ql

. . . rn→
Q

Q′1

⋮

⋯ Q′m

• Next step:

(τ1, rn⋯r2(Q1)) ⋅ ⋯ ⋅ (τl , rn⋯r2(Ql))∑
• Products of �nite length↝ �nitely many
• It su�ces to know the number of occurrences of each summand
• Such counters can be updated given a rule ri
↝ reduces MC games to Counter Parity Games

52/56



Counter Parity Games

Counter Parity Game (CPG) is a quantitative parity game:
• edges labelled with a�ne counter-update functions f ∶ c↦ Ac + B
• terminal vertices labelled by a payo� function λ = ±ci

Players:maximiser (Maxi) and minimiser (Mini)

In�nite plays payo�: ∞, if parity is satis�ed, otherwise −∞
Finite plays payo�: λ at terminal

Example

0

1

1

λ = c0

λ = −c1

c0, c0
+ c1

c0 + 5c1, 0

c 1
, c

0

c0, 3c1

c0 , 25c1

c 0
, c

0

Solution: through games with imperfect recall
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What we Have

Model
• Structure transition systemswith rewriting transitions
• Logics: �rst- andmonadic second-order
�xed-points, counting and some temporal operators

• Continuous dynamics by ODEs,merged for universal rules
• Gameswith payo�s de�ned by counting terms

Theorems
• Decidability of Lµ[MSO] on separated games
• Approximability of Qµ on �nite initialised linear hybrid systems
• Decidability ofQµ[#MSO] on separated games

Implementation
• Model is implemented with basicmodel checking
• Games can be played and heuristics are generated
• Dynamics is simulated but very naïve
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What weWish

What is not there
• More advancedmodel checking
• Continuous dynamics with better ODE solvers
• Game playing with good continuous parameter search

BIOCHAM .. .
• Is discrete rewriting of any use?
• How about games instead of logic sometimes?
• Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

Thank You

56/56



What weWish

What is not there
• More advancedmodel checking
• Continuous dynamics with better ODE solvers
• Game playing with good continuous parameter search

BIOCHAM .. .
• Is discrete rewriting of any use?
• How about games instead of logic sometimes?
• Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

Thank You
56/56


	Structure Rewriting Systems
	Structure Transition Systems and Games
	Separated Rules and Decidability
	Simulation-Based Playing
	Continuous Dynamics

	Quantitative Logics
	Standard -Calculus
	Quantitative -Calculus
	Model Checking on Linear Hybrid Systems
	Model Checking on Increasing Tree Rewriting Systems

	Summary

