Quantitative Logics on Structure Rewriting Systems

Diana Fischer, Łukasz Kaiser, Simon Leßenich, Łukasz Stafiniak

Mathematische Grundlagen der Informatik, RWTH Aachen Instytut Informatyki, Uniwersytet Wrocławski LIAFA, CNRS & Université Paris Diderot – Paris 7

EPI Contraintes Seminar, INRIA Paris-Rocquencourt, 2012

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ -Calculus Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Overview

Structure Rewriting Systems

Structure Transition Systems and Games

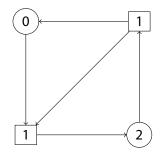
Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

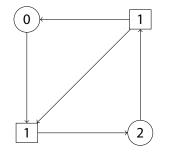
Standard μ -Calculus Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

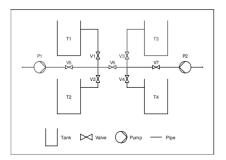
Look, I can do synthesis for that:



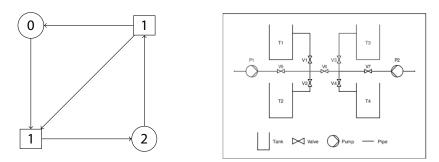
Look, I can do synthesis for that:



Great, I have something very similar:



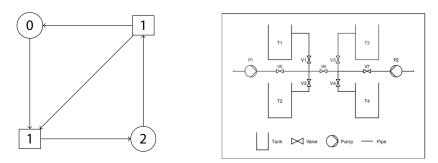
Look, I can do synthesis for that:



But the whole right side is just one state on the left!

Great, I have something very similar:

Look, I can do synthesis for that:



Great, I have something very similar:

But the whole right side is just **one state** on the left!

Can we model states by arbitrary relational structures?

Structure Transition Systems

Kripke Structures

 $\mathcal{K} = (V, E_a, E_b, \dots)$

Finite Relational Structures

 $\mathfrak{A}=(A,R_1,R_2,\dots)$

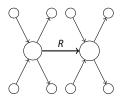
Metafinite Structures

 \mathfrak{A} and $f_1, f_2, \ldots : A \to \mathbb{R}$

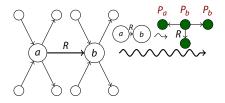
Structure Transition Systems

 \mathcal{K} and $s : V \to (\mathfrak{A}, \overline{f})$

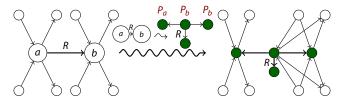
Rewriting Example



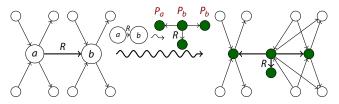
Rewriting Example



Rewriting Example



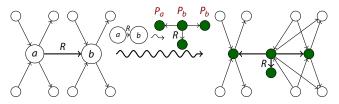
Rewriting Example



Relational Structures and Embeddings

 $\sigma : \mathfrak{A} = (A, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}}) \rightarrow (B, R_1^{\mathfrak{B}}, R_2^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}}) = \mathfrak{B}$ **Embedding:** σ is injective and $R_i^{\mathfrak{A}}(a_1, \dots, a_{r_i}) \Leftrightarrow R_i^{\mathfrak{B}}(\sigma(a_1), \dots, \sigma(a_{r_i}))$

Rewriting Example



Relational Structures and Embeddings

 $\sigma : \mathfrak{A} = (A, R_1^{\mathfrak{A}}, R_2^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}}) \rightarrow (B, R_1^{\mathfrak{B}}, R_2^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}}) = \mathfrak{B}$ **Embedding:** σ is injective and $R_i^{\mathfrak{A}}(a_1, \dots, a_{r_i}) \Leftrightarrow R_i^{\mathfrak{B}}(\sigma(a_1), \dots, \sigma(a_{r_i}))$ Rewriting Definition

$$\mathfrak{B} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma] \text{ iff } B = (A \smallsetminus \sigma(L)) \cup R \text{ and,}$$

for $M = \{(r, a) \mid a = \sigma(I), r \in P_I^{\mathfrak{R}} \text{ for some } I \in L\} \cup \{(a, a) \mid a \in A\},$
 $(b_1, \ldots, b_{r_i}) \in R_i^{\mathfrak{B}} \iff (b_1, \ldots, b_{r_i}) \in R_i^{\mathfrak{R}} \text{ or } (b_1M \times \ldots \times b_{r_i}M) \cap R_i^{\mathfrak{A}} \neq \emptyset.$
(in the second case at least one $b_j \notin \mathfrak{A}$)

Game arena (of a two-player zero-sum game) is a directed graph with:

- vertices partitioned into positions of Player 0 and Player 1
- edges labelled by rewriting rules

Game arena (of a two-player zero-sum game) is a directed graph with:

- vertices partitioned into positions of Player 0 and Player 1
- edges labelled by rewriting rules
- Two interpretations of $\mathfrak{L} \to \mathfrak{R}$:
 - Existential: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma]$, the player chooses the embedding σ
 - Universal: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}]$, all occurrences of \mathfrak{L} are rewritten to \mathfrak{R}

Game arena (of a two-player zero-sum game) is a directed graph with:

- vertices partitioned into positions of Player 0 and Player 1
- edges labelled by rewriting rules
- Two interpretations of $\mathfrak{L} \to \mathfrak{R}$:
 - Existential: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma]$, the player chooses the embedding σ
 - Universal: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}]$, all occurrences of \mathfrak{L} are rewritten to \mathfrak{R}

Winning conditions:

- L μ (or temporal) formula ψ with MSO sentences for predicates, or
- MSO formula φ to be evaluated on the limit of the play Limit of $\mathfrak{A}_0\mathfrak{A}_1\mathfrak{A}_2... = (\bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} A_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} R^{\mathfrak{A}_i})$
- **Reach** φ : Player 0 wins if the play reaches \mathfrak{A} s.t. $\mathfrak{A} \models \varphi$

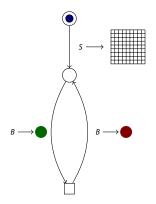
Game arena (of a two-player zero-sum game) is a directed graph with:

- vertices partitioned into positions of Player 0 and Player 1
- edges labelled by rewriting rules
- Two interpretations of $\mathfrak{L} \to \mathfrak{R}$:
 - Existential: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}/\sigma]$, the player chooses the embedding σ
 - Universal: $\mathfrak{A}_{next} = \mathfrak{A}[\mathfrak{L} \to \mathfrak{R}]$, all occurrences of \mathfrak{L} are rewritten to \mathfrak{R}

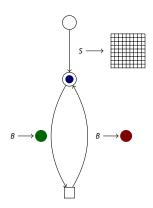
Winning conditions:

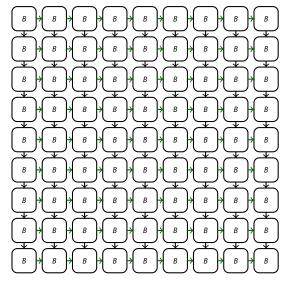
- L μ (or temporal) formula ψ with MSO sentences for predicates, or
- MSO formula φ to be evaluated on the limit of the play Limit of $\mathfrak{A}_0\mathfrak{A}_1\mathfrak{A}_2... = (\bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} A_i, \bigcup_{n \in \mathbb{N}} \bigcap_{i \ge n} R^{\mathfrak{A}_i})$
- **Reach** φ : Player 0 wins if the play reaches \mathfrak{A} s.t. $\mathfrak{A} \models \varphi$

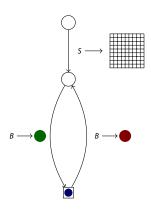
Motivation: many questions are **naturally defined as such games**: constraint satisfaction, model checking, graph measures, fun games

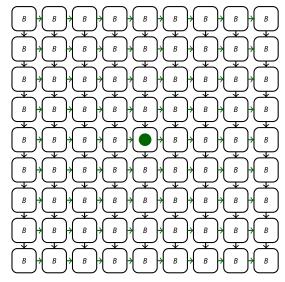


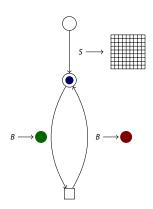
s

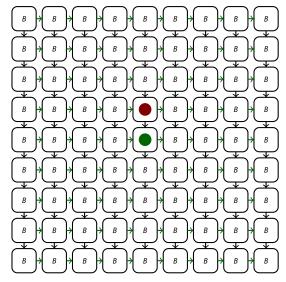


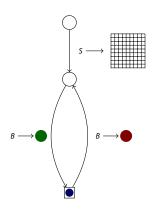


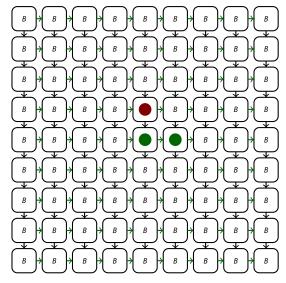


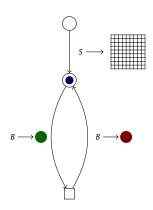


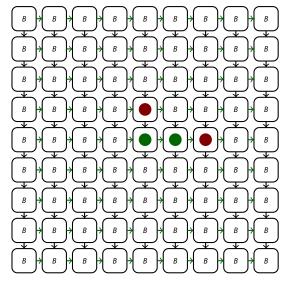


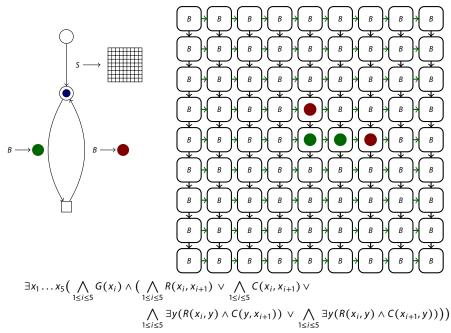












8/56

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability

Simulation-Based Playing Continuous Dynamics

Quantitative Logics

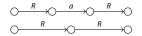
Standard μ-Calculus Quantitative μ-Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

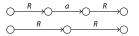
Separated: Not Separated:



Simple Structure Rewriting

Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

Separated: Not Separated:

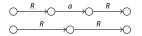


Simple Rule $\mathfrak{L} \to \mathfrak{R}$: \mathfrak{R} is separated and \mathfrak{L} is a single tuple in relation

Simple Structure Rewriting

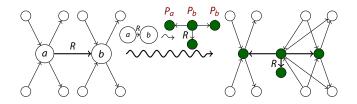
Separated Structures: no element is in two non-terminal relations (Courcelle, Engelfriet, Rozenberg, 1991)

Separated: Not Separated:



Simple Rule $\mathfrak{L} \to \mathfrak{R}$: \mathfrak{R} is separated and \mathfrak{L} is a single tuple in relation

Example



Decidability of Simple Rewriting Games

Logics

- L_{μ} [MSO]: Temporal properties expressed in L_{μ} (subsumes LTL) with properties of structures (states) expressed in MSO
- lim MSO: Property of the limit structure expressed in MSO

Theorem

- Let R be a finite set of (universal) simple structure rewriting rules,
- and φ be an L_{μ}[MSO] or lim MSO formula.

Then the set $\{\pi \in R^{\omega} : (\lim)S(\pi) \models \varphi\}$ is ω -regular.

Corollary

Establishing the winner of (universal) finite simple rewriting games is decidable. The winner has a winning strategy of a simple form.

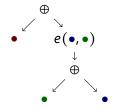
- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e

- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e

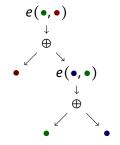
- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e

- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e

- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e



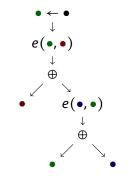
- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e



Proof: Interpreting a Structure in a Tree

Description of how to build \mathfrak{A} is a tree $\mathcal{T}(\mathfrak{A})$ with:

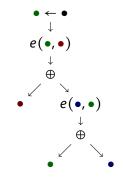
- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e



Proof: Interpreting a Structure in a Tree

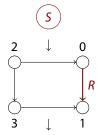
Description of how to build \mathfrak{A} is a tree $\mathcal{T}(\mathfrak{A})$ with:

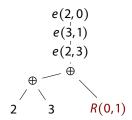
- Leafs of different colours 1...k
- *i* ← *j* to change colour of all nodes from *i* to *j*
- e(i, j) to add all pairs of (i, j)-coloured nodes to e

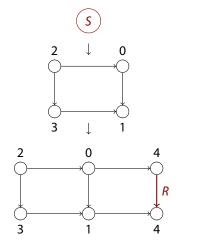


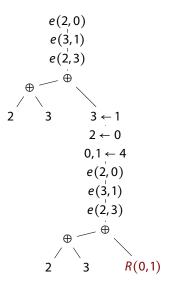
Theorem:

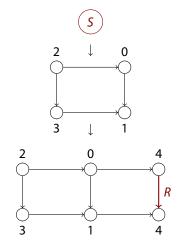
For every *k* there is an MSO-to-MSO interpretation \mathcal{I} such that for all structures \mathfrak{A} of clique-width $\leq k$ holds $\mathcal{I}(\mathcal{T}(\mathfrak{A})) \cong \mathfrak{A}$.



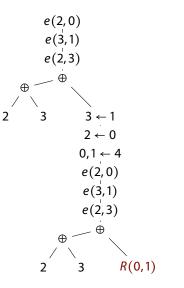








MSO-to-MSO interpretation: $\varphi \rightarrow \psi$



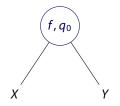
$$(S,q_0)$$

$$\bigcirc S \to f(X,Y)$$

$$\bigcirc X \to g(X,Y)$$

$$\bigcirc Y \to g(X,Y)$$

$$\vdots$$



$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

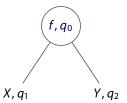
existential: pick transition

$$\bigcirc S \to f(X,Y)$$

$$\bigcirc X \to g(X,Y)$$

$$\bigcirc Y \to g(X,Y)$$

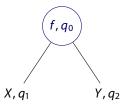
$$\vdots$$



existential: pick transition

 $f, q_0 \rightarrow (q_1, q_2)$

$$\bigcirc S \to f(X,Y) \\
\bigcirc X \to g(X,Y) \\
\bigcirc Y \to g(X,Y) \\
\vdots$$



existential: pick transition

 $f,q_0 \rightarrow (q_1,q_2)$

universal: left or right

$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$f, q_0$$

$$Y, q_2$$

existential: pick transition

 $f,q_0 \rightarrow (q_1,q_2)$

universal: left or right

$$S \rightarrow f(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$Y \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

$$X \rightarrow g(X, Y)$$

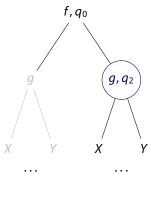
existential: pick transition

universal: left or right

 $f,q_0 \rightarrow (q_1,q_2)$

ignore

$$\bigcirc S \to f(X,Y)$$
$$\bigcirc X \to g(X,Y)$$
$$\bigcirc Y \to g(X,Y)$$
:



existential: pick transition

universal: left or right

 $f,q_0 \to (q_1,q_2)$

ignore

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing

Continuous Dynamics

Quantitative Logics

Standard μ-Calculus Quantitative μ-Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Motivation

Implementing the Decidability Result

- Tool: MONA
 - Developed at BRICS since 1996 by Nils Klarlund and Anders Møller
 - Symbolic representation with BDDs
 - Minimisation at each step
- Example: a simple tic-tac-toe game ~> memory overflow
- Problems due to inefficient coding
 - Bounded clique-width graphs not good for MONA
 - Only universal interpretation decidable, must encode games

Motivation

Implementing the Decidability Result

- Tool: MONA
 - Developed at BRICS since 1996 by Nils Klarlund and Anders Møller
 - Symbolic representation with BDDs
 - Minimisation at each step
- Example: a simple tic-tac-toe game ~> memory overflow
- Problems due to inefficient coding
 - Bounded clique-width graphs not good for MONA
 - Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with Ł. Stafiniak)

Motivation

Implementing the Decidability Result

- Tool: MONA
 - Developed at BRICS since 1996 by Nils Klarlund and Anders Møller
 - Symbolic representation with BDDs
 - Minimisation at each step
- Example: a simple tic-tac-toe game ~> memory overflow
- Problems due to inefficient coding
 - · Bounded clique-width graphs not good for MONA
 - Only universal interpretation decidable, must encode games

Simulation-Based Game Playing (Joint work with Ł. Stafiniak)

How to determine the **value of a position** *v* in a **general** game?

Two Approaches

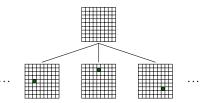
- UCT based algorithms
- Generate heuristic evaluation functions

- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo

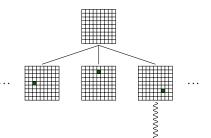
- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo

П							
\mp		_					Γ
+	Н		H	H	H	-	-
+	Н		H	H	H		
		_					
+	н	-	Н	Н	H	-	-
H	Н	-	H	Н	H	H	H

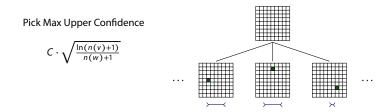
- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



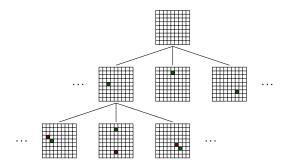
- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



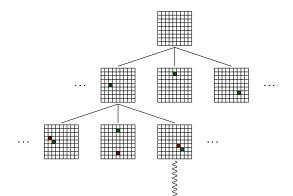
- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



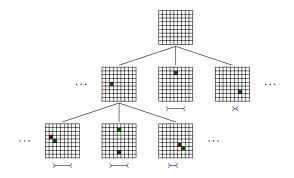
- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



- Idea: memorise first random moves, play minimax there
- History: encouraged by the success of MoGo



Deriving Heuristic Evaluation Functions

Methods

- Goal expansion and Type Normal Form
- · Summing over conjuncts in existentially quantified conjunctions
- · Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

 $(P(x) \land P(y) \land P(z) \land R(x,y) \land R(y,z)) \lor (P(x) \land P(y) \land P(z) \land C(x,y) \land C(y,z))$

 $\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$

Deriving Heuristic Evaluation Functions

Methods

- Goal expansion and Type Normal Form
- · Summing over conjuncts in existentially quantified conjunctions
- · Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

$$(P(x) \land P(y) \land P(z) \land R(x,y) \land R(y,z)) \lor (P(x) \land P(y) \land P(z) \land C(x,y) \land C(y,z))$$

 $\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$

Results vs. Fluxplayer	Toss Wins	Fluxplayer Wins	Tie	(fixed depth)
Breakthrough	95%	5%	0%	-
Connect4	20%	75%	5%	
Connect5	0%	0%	100%	
Pawn Whopping	50%	50%	0%	

Deriving Heuristic Evaluation Functions

Methods

- Goal expansion and Type Normal Form
- · Summing over conjuncts in existentially quantified conjunctions
- · Retain stable guards and include rule preconditions

Example: Tic-Tac-Toe without Diagonals

$$(P(x) \land P(y) \land P(z) \land R(x,y) \land R(y,z)) \lor (P(x) \land P(y) \land P(z) \land C(x,y) \land C(y,z))$$

 $\sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land R(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land R(y,z)} 1 \right) \right) + \sum_{x|P(x)} \left(\frac{1}{8} + \sum_{y|P(y) \land C(x,y)} \left(\frac{1}{4} + \sum_{z|P(z) \land C(y,z)} 1 \right) \right)$

Results vs. Fluxplayer	Toss Wins	Fluxplayer Wins	Tie (variable depth)
Breakthrough	95%	5%	0%
Connect4	45%	20%	35%
Connect5	0%	0%	100%
Pawn Whopping	60%	40%	0%

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ -Calculus Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Continuous Rewriting

Metafinite structures: $\mathfrak{A} = (A, R_1, \dots, R_k, f_1, \dots, f_l)$ with $f_i : A \to \mathbb{R}$

Additional Parameters to a Rule:

- dynamics: system of ordinary differential equations
- updates: equations assigning values on the right-hand side
- constraints: precondition, invariant, postcondition

Continuous Rewriting

Metafinite structures: $\mathfrak{A} = (A, R_1, \dots, R_k, f_1, \dots, f_l)$ with $f_i : A \to \mathbb{R}$

Additional Parameters to a Rule:

- dynamics: system of ordinary differential equations
- updates: equations assigning values on the right-hand side
- constraints: precondition, invariant, postcondition

Logic

Monadic Second-Order Logic (MSO):

 $\forall X \big(x \in X \land \big(\forall z, v \big(z \in X \land R(z, v) \to v \in X \big) \big) \to y \in X \big)$

- Real-valued terms with counting: $2 \cdot \chi (\exists y (P(y) \land R(x, y))) + f(x)$
- Real quantification: $\exists a \in \mathbb{R}(a^2 \cdot f(x) + a 1 = 0) \land (f(x) > 2)$

Continuous Rewriting

Metafinite structures: $\mathfrak{A} = (A, R_1, \dots, R_k, f_1, \dots, f_l)$ with $f_i : A \to \mathbb{R}$

Additional Parameters to a Rule:

- dynamics: system of ordinary differential equations
- updates: equations assigning values on the right-hand side
- constraints: precondition, invariant, postcondition

Logic

Monadic Second-Order Logic (MSO):

 $\forall X(x \in X \land (\forall z, v(z \in X \land R(z, v) \rightarrow v \in X)) \rightarrow y \in X)$

- Real-valued terms with counting: $2 \cdot \chi (\exists y (P(y) \land R(x, y))) + f(x)$
- Real quantification: $\exists a \in \mathbb{R}(a^2 \cdot f(x) + a 1 = 0) \land (f(x) > 2)$

Semantics of Application

- (1) All dynamics applies concurrently
- (2) Many universal rules with trivial discrete part
- (3) Single non-trivial discrete rewriting after continuous evolution

Games with Continuous Dynamics

Moves: the player chooses

- the rule and a match
- the time from an interval
- parameters for all rules from allowed intervals

Games with Continuous Dynamics

Moves: the player chooses

- the rule and a match
- the time from an interval
- parameters for all rules from allowed intervals

Payoffs

- logics as described before
- evaluated on the final state
- Example: value of *f* on the matched element
 parameter optimisation

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ -Calculus Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ -Calculus

Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

The μ -Calculus

Syntax:

 $\varphi ::= P_i \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi$

Evaluation of $\mu X.\varphi(X)$:

set $X_0 = \emptyset$ and compute $X_{i+1} := \varphi(X_i)$ until $X_{i+1} = X_i$ (Knaster-Tarski)

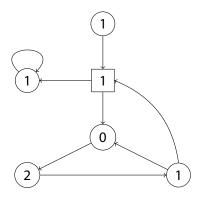
Example:

$$P \text{ until } \mathbf{Q} \coloneqq \mu X. (\mathbf{Q} \lor (P \land \diamondsuit X))$$

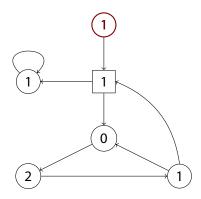
Motivation for μ -calculus:

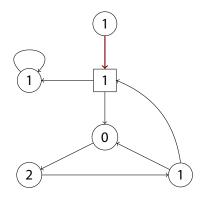
- The μ-calculus is more expressive than LTL and CTL
- Can express all bisimulation invariant MSO properties
- The connection between μ-calculus and parity games

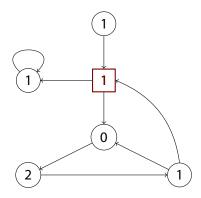
 $\mathcal{G} = (V, V_0, V_1, E, \Omega)$ and $vE \neq \emptyset$ for all $v \in V$

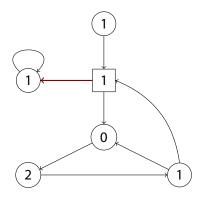


Player 0 wins \mathcal{G} from v_0 when she has a strategy σ so that for all strategies ρ of Pl. 1 the minimal colour appearing infinitely often on $\pi_{v_0}(\sigma, \rho)$ is even.

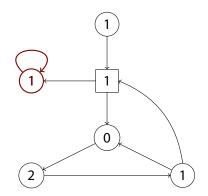




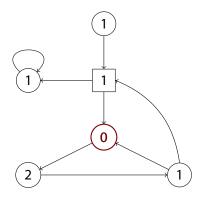


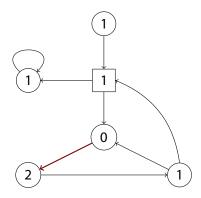


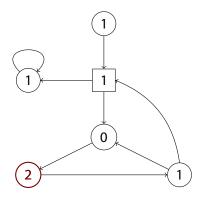
 $\mathcal{G} = (V, V_0, V_1, E, \Omega)$ and $vE \neq \emptyset$ for all $v \in V$

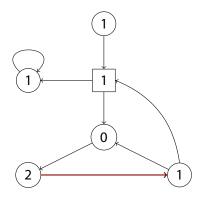


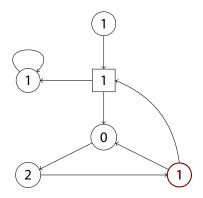
Outcome: π won by Abélard since the lowest colour on the cycle is odd.

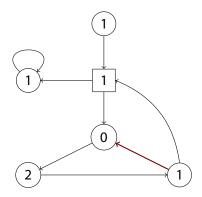


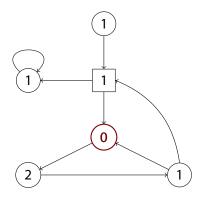


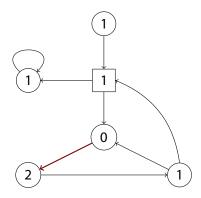




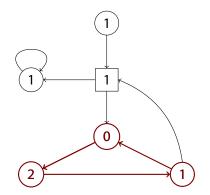








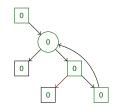
 $\mathcal{G} = (V, V_0, V_1, E, \Omega)$ and $vE \neq \emptyset$ for all $v \in V$



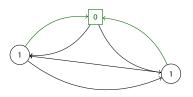
Outcome: π won by Eloïse since the lowest colour on the cycle is even.

One or Two Colours

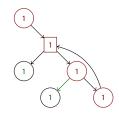
One Colour Safety Games



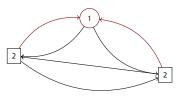
Two Colours Büchi Games



Reachability Games

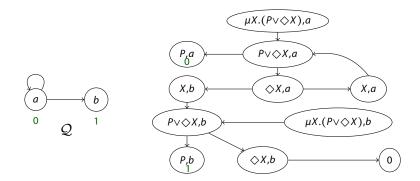


Co-Büchi Games



Parity Games and the *µ*-Calculus

Model Checking Games e.g. $MC[Q, \varphi]$ for Q and $\varphi = \mu X.(P \lor \diamondsuit X)$



Parity games are model checking games for $L\mu$

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard *µ*-Calculus

Quantitative μ -Calculus

Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

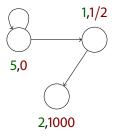
Summary

Quantitative Transition Systems

Quantitative Transition System (QTS):

 $\mathcal{Q} = (V, E, P_1, P_2, \dots, P_n)$ $P_i : V \to \mathbb{R}_{\infty}, \quad \text{not } V \to \{\top, \bot\}$

Example: QTS with quantitative predicates P and Q



Quantitative μ -Calculus

Syntax:

$$\varphi ::= \mathbf{P}_i \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi$$

Semantics:

- evaluation on QTS
- $\llbracket \varphi \rrbracket^{\mathcal{K}} : V \to \mathbb{R}_{\infty}$
- $\land \rightsquigarrow \min$
- ∨ → max

Example:

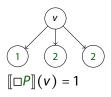
$\llbracket P \land \mathbf{Q} \rrbracket (\mathbf{v}) = 2$

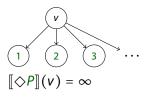
Evaluation of \Box and \diamondsuit

Intuition:

- $\Box \rightsquigarrow \mathsf{inf}$
- $\diamond \rightsquigarrow \sup$
- min and max for finitely branching systems

Example:



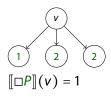


Evaluation of \Box and \diamondsuit

Intuition:

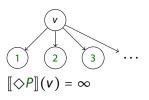
- $\Box \rightsquigarrow \mathsf{inf}$
- $\diamond \rightsquigarrow \sup$
- min and max for finitely branching systems

Example:



Formally:

- $[\![\diamondsuit \varphi]\!]^{\mathcal{K}}(v) = \sup_{v' \in vE} [\![\varphi]\!]^{\mathcal{K}}(v')$
- $\llbracket \Box \varphi \rrbracket^{\mathcal{K}}(v) = \inf_{v' \in vE} \llbracket \varphi \rrbracket^{\mathcal{K}}(v')$



Evaluation of Fixed Points

Intuition:

- Lattice (\mathcal{F}, \leq)
- $\mathcal{F} := \{ f : f \text{ is a function from } V \text{ to } \mathbb{R}_{\infty} \}$
- top element ∞ , bottom element $-\infty$
- Theorem of Knaster and Tarski applies

Inductive evaluation of μ :

$$\begin{split} g_0 &= 0 \\ g_\alpha &= \begin{cases} \llbracket \varphi \rrbracket_{\varepsilon \llbracket X \leftarrow g_{\alpha-1} \rrbracket} & \text{for } a \text{ successor ordinal,} \\ \lim_{\beta < \alpha} \llbracket \varphi \rrbracket_{\varepsilon \llbracket X \leftarrow g_\beta \rrbracket} & \text{for } a \text{ limit ordinal,} \end{cases} \\ \\ \llbracket \mu X. \varphi \rrbracket_{\varepsilon}^{\mathcal{K}} &= g_{\gamma} \text{ where } g_{\gamma} = g_{\gamma+1} \end{split}$$

Evaluation of Fixed Points

Intuition:

- Lattice (\mathcal{F}, \leq)
- $\mathcal{F} \coloneqq \{f : f \text{ is a function from } V \text{ to } \mathbb{R}_{\infty}\}$
- top element ∞ , bottom element $-\infty$
- Theorem of Knaster and Tarski applies

Inductive evaluation of μ **:**

$$\begin{split} g_0 &= 0 \\ g_\alpha &= \begin{cases} \llbracket \varphi \rrbracket_{\varepsilon \llbracket X \leftarrow g_{\alpha-1} \rrbracket} & \text{for } \alpha \text{ successor ordinal,} \\ \lim_{\beta < \alpha} \llbracket \varphi \rrbracket_{\varepsilon \llbracket X \leftarrow g_\beta \rrbracket} & \text{for } \alpha \text{ limit ordinal,} \\ \mu X. \varphi \rrbracket_{\varepsilon}^{\mathcal{K}} &= g_{\gamma} \text{ where } g_{\gamma} = g_{\gamma+1} \end{split}$$

Formally:

Γ

- $\llbracket \mu X. \varphi \rrbracket_{\varepsilon}^{\mathcal{K}} = \inf \{ f \in \mathcal{F} : f = \llbracket \varphi \rrbracket_{\varepsilon [X \leftarrow f]}^{\mathcal{K}} \}$
- $\llbracket vX.\varphi \rrbracket_{\varepsilon}^{\mathcal{K}} = \sup \{ f \in \mathcal{F} : f = \llbracket \varphi \rrbracket_{\varepsilon[X \leftarrow f]}^{\mathcal{K}} \}$

Quantitative μ -Calculus

Syntax: $\varphi ::= P_i \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \diamondsuit \varphi \mid \mu X.\varphi \mid \nu X.\varphi$

Semantics:

Evaluation on quantitative transitions system, $\llbracket \varphi \rrbracket^{\mathcal{K}} : V \to \mathbb{R}_{\infty}$

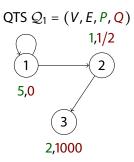
Quantitative μ -Calculus

Syntax: $\varphi ::= P_i \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \diamondsuit \varphi \mid \mu X.\varphi \mid \nu X.\varphi$

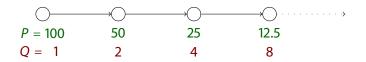
Semantics:

Evaluation on quantitative transitions system, $\llbracket \varphi \rrbracket^{\mathcal{K}} : V \to \mathbb{R}_{\infty}$

- $\llbracket \varphi \land \psi \rrbracket = \min\{\llbracket \varphi \rrbracket, \llbracket \psi \rrbracket\}$
- $\llbracket \varphi \lor \psi \rrbracket = \max\{\llbracket \varphi \rrbracket, \llbracket \psi \rrbracket\}$
- $[] \diamondsuit \varphi] = \sup [\![\varphi]\!] (succ)$
- $\llbracket \Box \varphi \rrbracket = \inf \llbracket \varphi \rrbracket (succ)$
- inductive evaluation of fixed points over lattice (𝒫, ≤)



Basic Example in Quantitative μ -Calculus



 $P \text{ until } \mathbf{Q} := \mu X.(\mathbf{Q} \lor (P \land \diamondsuit X))$

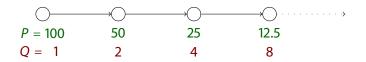
Inductive Evaluation:

•
$$\llbracket P \text{ until } Q \rrbracket_0(v) = -\infty$$
,

- $\llbracket P \text{ until } Q \rrbracket_1(v) = Q(v),$
- $\llbracket P \operatorname{until} Q \rrbracket_2(v) = \max\{Q(v), \min\{P(v), \max_{w \in vE}\{Q(w)\}\}$

• . . .

Basic Example in Quantitative μ -Calculus



 $P \text{ until } \mathbf{Q} := \mu X.(\mathbf{Q} \lor (P \land \diamondsuit X))$

Inductive Evaluation:

•
$$\llbracket P \text{ until } Q \rrbracket_0(v) = -\infty$$
,

- $\llbracket P \text{ until } Q \rrbracket_1(v) = Q(v),$
- $\llbracket P \operatorname{until} Q \rrbracket_2(v) = \max\{Q(v), \min\{P(v), \max_{w \in vE}\{Q(w)\}\}$

• • • •

Intuition: Value of *P* at the last time *P* > *Q*

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ-Calculus Quantitative μ-Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Linear Hybrid Systems

Finite representation of an infinite QTS

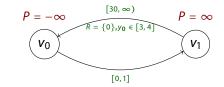
- Variables y_1, \ldots, y_k evolve in time, in v by $\frac{dy_i}{dt} = \delta_i(v)$
- Transitions are labelled by triples (I, \overline{C}, R)
 - Interval I: possible period of time to stay in v
 - Vector \overline{C} : interval **constraints** on the variables \overline{y}
 - Set R: variables to reset after the transition

Quantitative μ -Calculus on LHS

$$\varphi ::= \mathbf{y}_{j} \mid P_{i} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi$$

Semantics defined on the **represented QTS** (where y_i are predicates).

Example



Main Result

Definition

A LHS is **initialised** if for each transition (v, l, w) and variable y_i

 $\delta_i(\mathbf{v}) \neq \delta_i(\mathbf{w}) \implies i \in R_I$

Intuition: $Q\mu$ can be approximated on initialised LHS

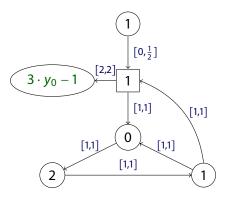
Theorem

- Let \mathcal{K} be an initialised LHS over \mathbb{Q} ,
- and φ a quantitative μ -calculus formula,
- and n > 0 an integer (approximation quality).

It is decidable whether $\llbracket \varphi \rrbracket^{\mathcal{K}} = \infty$, $\llbracket \varphi \rrbracket^{\mathcal{K}} = -\infty$, and else a number $\mathbf{r} \in \mathbb{Q}$ can be computed such that $\llbracket \varphi \rrbracket^{\mathcal{K}} - \mathbf{r} | < \frac{1}{n}$.

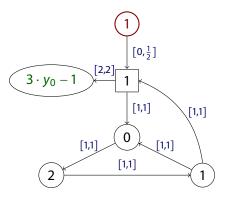
Interval Parity Games

An interval parity game \mathcal{G} is played on an LHS with priorities in locations



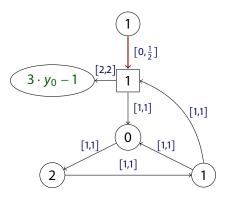
Interval Parity Games

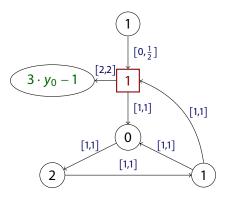
An interval parity game \mathcal{G} is played on an LHS with priorities in locations

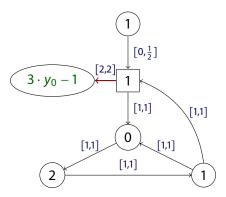


Interval Parity Games

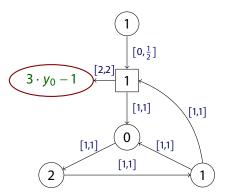
An interval parity game \mathcal{G} is played on an LHS with priorities in locations



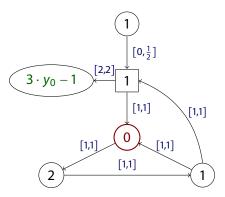


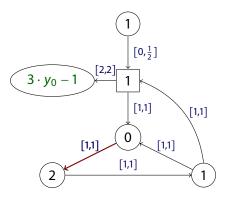


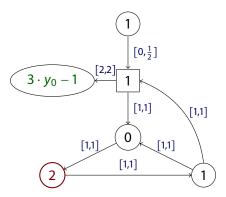
An interval parity game ${\cal G}$ is played on an LHS with priorities in locations

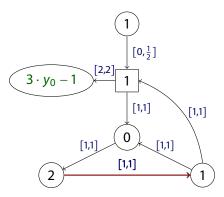


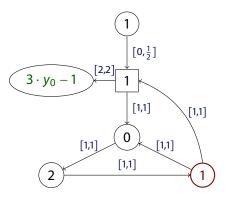
Outcome: $p(\pi) = 3 \cdot (\frac{1}{3} + 2) - 1$

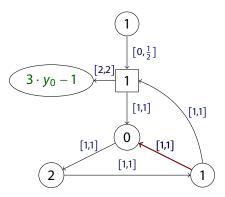


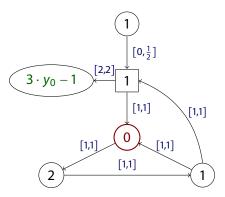


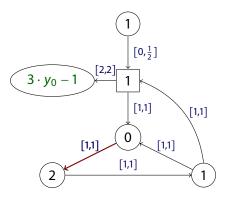




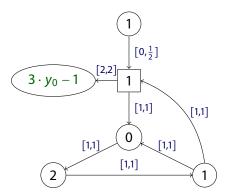








An interval parity game \mathcal{G} is played on an LHS with priorities in locations



Outcome: $p(\pi) = \infty$ since lowest priority on the cycle is 0

Model Checking Games for $Q\mu$

Model Checking Game $MC[\mathcal{K}, \varphi]$

Positions: $(\psi, s), \psi$ is a subformula of φ , and s location of \mathcal{K} , or $(-\infty), (\infty)$

Eloïse moves:

$$(\psi \lor \varphi, s) \xrightarrow{(\psi, s)} (\phi, s) \xrightarrow{(\varphi, s)} (\Diamond \varphi, s) \xrightarrow{(\varphi, t), t \in sE} (-\infty), sE = \emptyset$$

$$(\mu X.\varphi, s) \longrightarrow (\varphi, s)$$
$$(X, s) \longrightarrow (\varphi, s)$$

Model Checking Games for $Q\mu$

Abélard moves:

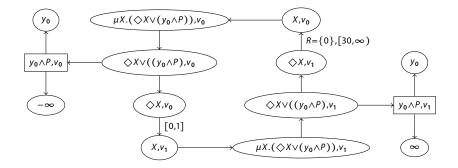
$$(\psi \land \varphi, s) \xrightarrow{(\psi, s)} (\varphi, s) \qquad (\Box \varphi, s) \longrightarrow (\varphi, t), t \in sE$$
$$(\infty), sE = \emptyset$$
$$(vX.\varphi, s) \longrightarrow (\varphi, s)$$
$$(X, s) \longrightarrow (\varphi, s)$$

Terminal Positions: $(P_i, s), (y_j, s), (-\infty)$, and (∞) with payoff accordingly

Priorities: $\Omega(X, s)$ is even if X is a v-variable, $\Omega(X, s)$ is odd otherwise; priority chosen according to alternation level of X, all other positions get alternation depth of φ .

Example Model Checking Game

 $\mathsf{MC}[\mathcal{Q}, \varphi] \text{ for example } \mathcal{Q} \text{ and } \varphi = \mu X.(\Diamond X \lor (y_0 \land P))$

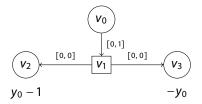


Using Interval Parity Games

Previous Result

For every formula φ in Q μ , LHS \mathcal{K} , and $v \in \mathcal{K}$, the value of MC[\mathcal{Q}, φ] from (φ, v) equals $\llbracket \varphi \rrbracket^{\mathcal{K}}(v)$.

Problem with Discretisation (we approximate)



After approximation and discretisation: Counter Parity Games (only increments and resets), which we solve later.

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

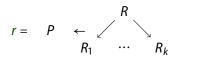
Quantitative Logics

Standard μ-Calculus Quantitative μ-Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

Increasing Tree-Rewriting Rules

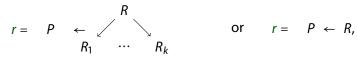
Increasing tree-rewriting rules have of the form



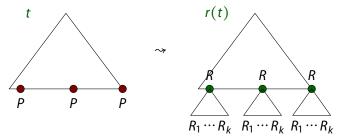
or
$$r = P \leftarrow R$$
,

Increasing Tree-Rewriting Rules

Increasing tree-rewriting rules have of the form



Applying the rule r to a tree t replaces every P-leaf.



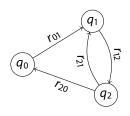
Increasing Tree-Rewriting Systems

 \mathcal{R} – a set of increasing tree-rewriting rules

Definition

An increasing tree-rewriting system (ITRS) consists of

- a finite set **Q** of states
- a labelled edge relation $E \subseteq Q \times \mathcal{R} \times Q$



Increasing Tree-Rewriting Systems

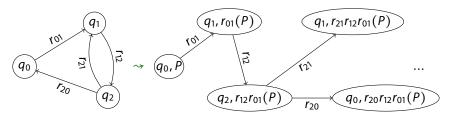
 \mathcal{R} – a set of increasing tree-rewriting rules

Definition

An increasing tree-rewriting system (ITRS) consists of

- a finite set **Q** of states
- a labelled edge relation $E \subseteq Q \times \mathcal{R} \times Q$

An ITRS induces a tree-labelled transition system



The quantitative μ -calculus for ITRS

Definition (MSO counting term)

An MSO **counting term** has the form $\#_{\overline{x}}\varphi(\overline{x})$, where $\overline{x} = \text{free}(\varphi)$.

$$\llbracket \#_{\overline{x}} \varphi(\overline{x}) \rrbracket^{\mathfrak{A}} = |\{\overline{a} \mid \mathfrak{A} \models \varphi(\overline{a})\}|$$

The quantitative μ -calculus for ITRS

Definition (MSO counting term)

An MSO counting term has the form $\#_{\overline{x}}\varphi(\overline{x})$, where $\overline{x} = \text{free}(\varphi)$.

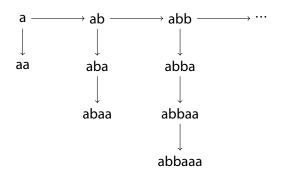
$$\llbracket \#_{\overline{x}} \varphi(\overline{x}) \rrbracket^{\mathfrak{A}} = |\{\overline{a} \mid \mathfrak{A} \models \varphi(\overline{a})\}|$$

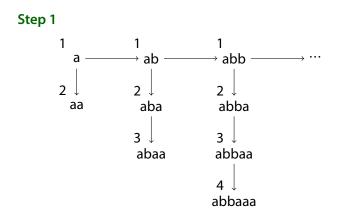
Definition (Qµ[#MSO]**)**

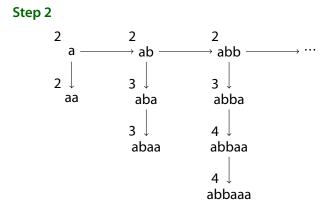
As $Q\mu$ but with MSO counting terms as quantitative predicates.

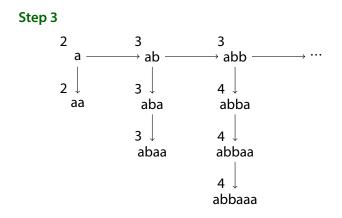
 $\psi ::= \#_{\overline{X}} \varphi(\overline{X}) \mid X \mid \neg \psi \mid \psi \land \psi \mid \psi \lor \psi \mid \Box \psi \mid \Diamond \psi \mid \mu X.\psi \mid \nu X.\psi$

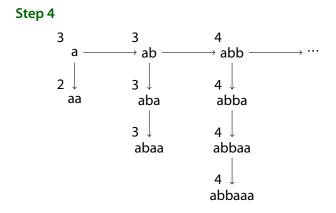
Evaluated on the induced tree-labelled transition systems.

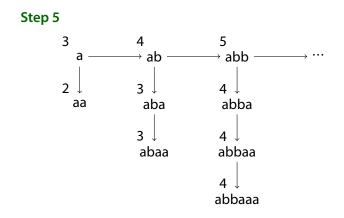


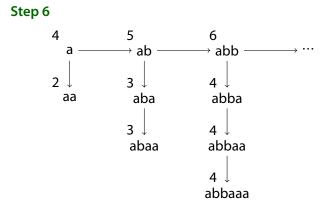






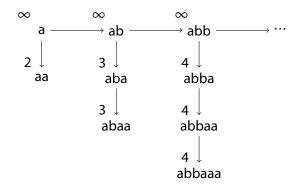






• $\mu X. \#_x P_a(x) \lor \diamondsuit X$

Step ω



- μX . $\#_x P_a(x) \lor \diamondsuit X$ Maximal number of *a*s seen on any path
- μX . $\#_x (P_a(x) \land \exists y (y < x \land P_b(x))) \lor \diamondsuit X$ Maximal number of *a*s after a *b* seen on any path
- $vX. #_x P_a(x) \wedge \Box X$

Minimal number of as seen on every path

Main Result

Theorem

Let $\psi \in Q\mu[\#MSO]$ and \mathcal{T} be an ITRS. Then $[\![\psi]\!]^{\mathcal{T}}$ can be computed.

Main Result

Theorem

Let $\psi \in Q\mu[\#MSO]$ and \mathcal{T} be an ITRS. Then $[\![\psi]\!]^{\mathcal{T}}$ can be computed.

Proof steps:

- Use model-checking games ~ quantitative parity games
 Problem: infinite arena as trees have unbounded size
- Introduce counters to evaluate counting terms
 ~ counter parity games with a finite arena
- Solve counter parity games

Techniques: MSO counting terms decomposition, counter parity games

Counters for ITRS

Idea:

- In general, the size of the increasing trees is unbounded
- Instead of the **trees** store the **number** of \overline{x} satisfying counting terms
- Update these numbers on application of tree-rewriting rules

Counters for ITRS

Idea:

- In general, the size of the increasing trees is unbounded
- Instead of the **trees** store the **number** of \overline{x} satisfying counting terms
- Update these numbers on application of tree-rewriting rules

Problems:

- A subset of the variables might be assigned to a future tree
- · Whether an assignment is valid at present might depend on the future

Counters for ITRS

Idea:

- In general, the size of the increasing trees is unbounded
- Instead of the **trees** store the **number** of \overline{x} satisfying counting terms
- Update these numbers on application of tree-rewriting rules

Problems:

- A subset of the variables might be assigned to a future tree
- Whether an assignment is valid at present might depend on the future **Example**

Let
$$\varphi = \#_x \Big(P_a(x) \land \forall y \big(x < y \to \neg P_b(y) \big) \Big).$$

The counter for *ba* is 1 but after adding a *b* it needs to be reset.

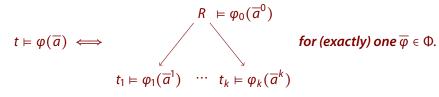
Decomposition

Theorem

For
$$t = \bigvee_{t_1 \cdots t_k}^{R}$$
, given only k and $\varphi(\overline{x}) \in MSO$, one can compute

 $\Phi = \{(\varphi_0(\overline{x}_0), \dots, \varphi_k(\overline{x}_k)) \mid (\overline{x}_0, \dots, \overline{x}_k) \text{ partition of } \overline{x}\}$

such that $qr(\varphi_i) \leq qr(\varphi)$ and



Decomposition of Counting Terms

Theorem

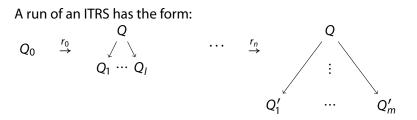
For $t = \bigvee_{t_1}^{Q}$, given only k, a counting term $\#_{\overline{x}}\varphi(\overline{x})$, and a partition $[\overline{x}]_l = (\overline{x}_0, \dots, \overline{x}_l)$ of \overline{x} , one can compute

$$\Psi_{\left[\overline{x}\right]_{I}} = \left\{ \left(\tau_{0}(\overline{x}_{0}), \cdots, \tau_{I}(\overline{x}_{I}) \right) \mid (\overline{x}_{0}, \cdots, \overline{x}_{I}) = \left[\overline{x}\right]_{I} \right\}$$

such that $qr(\tau_i) \leq qr(\varphi)$ and

 $\llbracket \#_{\overline{x}} \varphi(\overline{x}) \rrbracket^t = \sum_{[\overline{x}]_l \in \{[\overline{x}]_l\}} \sum_{\overline{\tau} \in \Psi_{[\overline{x}]_l}} \llbracket \#_{\overline{x}_0} \tau_0(\overline{x}_0) \rrbracket^{t_Q} \cdot \llbracket \#_{\overline{x}_1} \tau_1(\overline{x}_1) \rrbracket^{t_1} \cdot \ldots \cdot \llbracket \#_{\overline{x}_l} \tau_l(\overline{x}_l) \rrbracket^{t_l}.$

A run of an ITRS has the form:



• After a single step decomposition of $\#_{\overline{x}}\varphi(\overline{x})$:

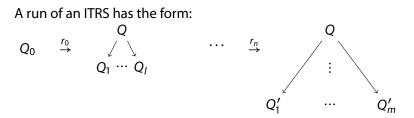
$$\sum (\tau_0, Q) \cdot (\tau_1, r^n \cdots r^1(Q_1)) \cdot \cdots \cdot (\tau_l, r^n \cdots r^1(Q_l))$$

A run of an ITRS has the form: $Q_0 \xrightarrow{r_0} \swarrow Q_1 \cdots Q_l$ $Q_1 \cdots Q_l$ $Q_1 \cdots Q_m$ $Q_1 \cdots Q_m$

• Next step:

$$\sum_{j=1}^{n} \left(\tau_{1}, r^{n} \cdots r^{2}(Q_{1})\right) \cdots \left(\tau_{l}, r^{n} \cdots r^{2}(Q_{l})\right)$$

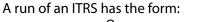
$$\overbrace{\sum \left(\tau_{1}', r^{n} \cdots r^{2}(Q_{1}^{1})\right) \cdots \left(\tau_{k}', r^{n} \cdots r^{2}(Q_{k}^{1})\right)}^{j}$$

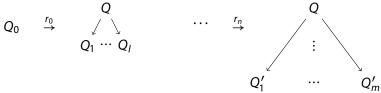


• Next step:

$$\sum (\tau_1, r^n \cdots r^2(Q_1)) \cdots (\tau_l, r^n \cdots r^2(Q_l))$$

• Products of finite length ~> finitely many

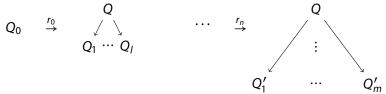




• Next step:

$$\sum (\tau_1, r^n \cdots r^2(Q_1)) \cdots (\tau_l, r^n \cdots r^2(Q_l))$$

- Products of finite length ~> finitely many
- · It suffices to know the number of occurrences of each summand
- Such counters can be updated given a rule r_i



• Next step:

$$\sum (\tau_1, r^n \cdots r^2(Q_1)) \cdots (\tau_l, r^n \cdots r^2(Q_l))$$

- Products of finite length ~> finitely many
- · It suffices to know the number of occurrences of each summand
- Such counters can be updated given a rule r_i
- → reduces MC games to Counter Parity Games

Counter Parity Games

Counter Parity Game (CPG) is a quantitative parity game:

- edges labelled with affine counter-update functions $f: \overline{c} \mapsto A\overline{c} + B$
- terminal vertices labelled by a payoff function $\lambda = \pm c_i$

Players: maximiser (Maxi) and minimiser (Mini)

Infinite plays payoff: ∞ , if parity is satisfied, otherwise $-\infty$ **Finite plays payoff:** λ at terminal

Counter Parity Games

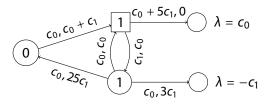
Counter Parity Game (CPG) is a quantitative parity game:

- edges labelled with affine counter-update functions $f: \overline{c} \mapsto A\overline{c} + B$
- terminal vertices labelled by a payoff function $\lambda = \pm c_i$

Players: maximiser (Maxi) and minimiser (Mini)

Infinite plays payoff: ∞ , if parity is satisfied, otherwise $-\infty$ **Finite plays payoff:** λ at terminal

Example



Counter Parity Games

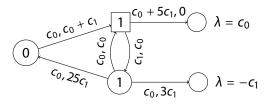
Counter Parity Game (CPG) is a quantitative parity game:

- edges labelled with affine counter-update functions $f: \overline{c} \mapsto A\overline{c} + B$
- terminal vertices labelled by a payoff function $\lambda = \pm c_i$

Players: maximiser (Maxi) and minimiser (Mini)

Infinite plays payoff: ∞ , if parity is satisfied, otherwise $-\infty$ **Finite plays payoff:** λ at terminal

Example



Solution: through games with imperfect recall

Overview

Structure Rewriting Systems

Structure Transition Systems and Games Separated Rules and Decidability Simulation-Based Playing Continuous Dynamics

Quantitative Logics

Standard μ -Calculus Quantitative μ -Calculus Model Checking on Linear Hybrid Systems Model Checking on Increasing Tree Rewriting Systems

Summary

What we Have

Model

- Structure transition systems with rewriting transitions
- Logics: first- and monadic second-order fixed-points, counting and some temporal operators
- Continuous dynamics by ODEs, merged for universal rules
- Games with payoffs defined by counting terms

Theorems

- Decidability of L_{μ} [MSO] on separated games
- Approximability of $Q\mu$ on **finite initialised linear** hybrid systems
- Decidability of Qµ[#MSO] on separated games

Implementation

- Model is implemented with basic model checking
- Games can be played and heuristics are generated
- Dynamics is simulated but very naïve

What we Wish

What is not there

- More advanced model checking
- Continuous dynamics with better ODE solvers
- Game playing with good continuous parameter search

BIOCHAM ...

- Is discrete rewriting of any use?
- How about games instead of logic sometimes?
- Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

What we Wish

What is not there

- More advanced model checking
- Continuous dynamics with better ODE solvers
- Game playing with good continuous parameter search

BIOCHAM ...

- Is discrete rewriting of any use?
- How about games instead of logic sometimes?
- Using BIOCHAM (at least CMA-ES?) for continuous model-checking?

Thank You