sig
module PSet :
sig
type elt = OrderedPoly.polynomial
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> t * bool * t
end
type pset = OrderedPolySet.PSet.t
val empty : OrderedPolySet.PSet.t
val add :
OrderedPoly.polynomial -> OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t
val union :
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t
val cardinal : OrderedPolySet.PSet.t -> int
val iter :
(OrderedPoly.polynomial -> unit) -> OrderedPolySet.PSet.t -> unit
val elements : OrderedPolySet.PSet.t -> OrderedPoly.polynomial list
val str : OrderedPolySet.PSet.t -> string
val map :
(OrderedPoly.polynomial -> OrderedPoly.polynomial) ->
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t * OrderedPolySet.PSet.t
val leading_coeff : OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t
val omit_leading :
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t * OrderedPolySet.PSet.t
val differentiate :
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t * OrderedPolySet.PSet.t
val div :
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t
val modified_remainder :
OrderedPolySet.PSet.t * OrderedPolySet.PSet.t ->
OrderedPolySet.PSet.t * OrderedPolySet.PSet.t
exception Closure_count_exceeded of int
val closure :
?upto:int ->
OrderedPolySet.PSet.t -> OrderedPolySet.PSet.t * OrderedPolySet.PSet.t
end