
Translating the Game Description Language to Toss

Łukasz Kaiser
CNRS & LIAFA

Paris

Łukasz Stafiniak
Institute of Computer Science

University of Wrocław

Abstract
We show how to translate games defined in the Game De-
scription Language (GDL) into the Toss format. GDL is a
variant of Datalog used to specify games in the General Game
Playing Competition. Specifications in Toss are more declar-
ative than in GDL and make it easier to capture certain use-
ful game characteristics. The presented translation must thus
detect structural properties of games which are not directly
visible in the GDL specification.

Introduction
General Game Playing (GGP) is concerned with the con-
struction of programs able to play arbitrary games without
specific information about the game present in the program.
GGP programs compete against each other in the GGP Com-
petition, where games are specified in the Game Description
Language (GDL), cf. (Genesereth and Love 2005). A suc-
cessful GGP agent must reason about the rules of the game
and extract from them game-specific knowledge. To facili-
tate the creation of good general players, GDL was designed
as a high-level, declarative language. Still, it is not directly
clear from the GDL specification of a game what parts con-
stitute a board, what the pieces are, etc. — the GDL defines
only Datalog terms, no high-level game concepts.

For this reason, we introduce a new formalism, which
is more tightly related to games and even higher-level and
more declarative than GDL. In a companion paper (Kaiser
and Stafiniak 2011) we show how these higher-level features
of the introduced formalism can be used to build a compet-
itive GGP player more easily than starting from GDL itself.
But to compete against GGP players, it is necessary to trans-
late games from GDL into the presented formalism, which
in itself presents several challenges. In this work, we show
how a good translation can be made, assuming certain re-
strictions on the GDL specification.

Games in the Toss Formalism
Since the Toss formalism is not very well known, we repeat
here several definitions from the paper (Kaiser and Stafiniak
2011), but with support for concurrency and fixed-points.

The state of the game is represented in the Toss formalism
by a finite relational structure, i.e. a labelled directed hyper-
graph. A relational structure A = (A,R1, . . . ,Rk) is com-
posed of a universeA and a number of relationsR1, . . . ,Rk.

We denote the arity of Ri by ri, so Ri ⊆ Ari . The signature
of A is the set of symbols {R1, . . . ,Rk}.

Relational Structure Rewriting
The moves of the players are described by structure rewrit-
ing rules, a generalised form of term and graph rewriting.
Structure rewriting has been introduced in (Rajlich 1973)
and is most recognised in graph rewriting and software en-
gineering communities, where it is regarded as easy to un-
derstand and well suited for visual programming.

In our setting, a rule L →s R consists of two finite rela-
tional structures, L and R, over the same signature, and of
a partial function s ∶ R → L specifying which elements of
L will be substituted by which elements of R. With each
rule, we will also associate a set of relations symbols τe to
be embedded exactly, as described below.
Definition 1. Let A and B be two relational structures over
the same signature. A function f ∶ A↪B is a τe-embedding
if f is injective, for each Ri ∈ τe it holds that

(a1, . . . , ari) ∈ RA
i ⇔ (f(a1), . . . , f(ari)) ∈ RB

i ,

and for Rj /∈ τe it holds that

(a1, . . . , arj) ∈ RA
j ⇒ (f(a1), . . . , f(arj)) ∈ RB

j .

A τe-match of the rule L →s R in another structure A is a
τe-embedding σ ∶ L↪ A.
Definition 2. The result of an application of L →s R to
A on the match σ, denoted A[L →s R/σ], is a relational
structure B with universe (A ∖ σ(L))∪̇R, and relations
given as follows. A tuple (b1, . . . , bri) is in the new rela-
tionRB

i if and only if either it is in the relation in R already,
(b1, . . . , bri) ∈ RR

i , or there exists a tuple in the previous
structure, (a1, . . . , ari) ∈ RA

i , such that for each j either
aj = bj or aj = σ(s(bj)), i.e. either the element was there
before or it was matched and bj is the replacement as speci-
fied by the rule. Moreover, if Ri ∈ τe then we require in the
second case that at least one bl was already in the original
structure, i.e. bl = al for some l ∈ {1, . . . , ri}.

Logic and Constraints
The logic we use for specifying properties of states is an
extension of first-order logic with least and greatest fixed-
points, real-valued terms and counting operators, cf. (Grädel
2007; Grädel and Gurevich 1998).

Syntax. We use first-order variables x1, x2, . . . ranging over
elements of the structure, second-order variablesX1,X2, . . .
ranging over relations, and we define formulas ϕ ∈ FA and
real-valued terms ρ by the following grammar (n,m ∈ N),
with second-order variables restricted to appear only posi-
tively, as usual in the least fixed-point logic.

ϕ ∶= Ri(x1, . . . , xri) ∣ xi = xj ∣ ρ < ρ ∣ ¬ϕ ∣ ϕ ∨ ϕ
∣ ϕ ∧ ϕ ∣ ∃xi ϕ ∣ ∀xi ϕ ∣ lfpXi ϕ ∣ gfpXi ϕ ,

ρ ∶= n

m
∣ ρ + ρ ∣ ρ ⋅ ρ ∣ χ[ϕ] ∣ ∑

x∣ϕ

ρ .

Semantics. Most of the above operators are defined in the
well known way, e.g. ρ + ρ is the sum and ρ ⋅ ρ the prod-
uct of two real-valued terms, and lfpX ϕ(X) is the least
fixed-point of the equation X = ϕ(X). Among less known
operators, the term χ[ϕ] denotes the characteristic function
of ϕ, i.e. the real-valued term which is 1 for all assignments
for which ϕ holds and 0 for all other. The term ∑x∣ϕ ρ de-
notes the sum of the values of ρ(x) for all assignments of
elements of the structure to x for which ϕ(x) holds. Note
that these terms can have free variables, e.g. the set of free
variables of ∑x∣ϕ ρ is the union of free variables of ϕ and
free variables of ρ, minus the set {x}.

The logic defined above is used in structure rewriting rules
in two ways. First, it is possible to define a new relation
R(x) using a formula ϕ(x) with free variables contained
in x. Defined relations can be used on left-hand sides of
structure rewriting rules, but are not allowed on right-hand
sides. The second way is to add constraints to a rule. A
rule L →s R can be constrained using two sentences (i.e.
formulas without free variables): ϕpre and ϕpost. In ϕpre

we allow additional constants l for each l ∈ L and in ϕpost

special constants for each r ∈ R can be used. A rule L →s

R with such constraints can be applied on a match σ in A
only if the following holds: At the beginning, the formula
ϕpre must hold in A with the constants l interpreted as σ(l),
and, after the rule is applied, the formula ϕpost must hold in
the resulting structure with each r interpreted as the newly
added element r (cf. Definition 2).

Structure Rewriting Games
One can in principle describe a game simply by providing a
set of allowed moves for each player. Still, in many cases it
is natural to specify the control flow directly. For this reason,
we define games as labelled graphs as follows.

Definition 3. A structure rewriting game with k players is a
finite directed graph in which in each vertex, called location,
we assign to each player from {1, . . . , k} a real-valued pay-
off term. Each edge of the graph represents a possible move
and is labelled by a tuple

(p,L→s R, τe, ϕpre, ϕpost),

which specifies the player p ∈ {1, . . . , k} who moves and
the rewriting rule to be used with relations to be embedded
and a pre- and post-condition. Multiple edges with different
labels are possible between two locations.

Game Graph:

↝ P

τe = {P,Q}
↝ Q

τe = {P,Q}

Starting Structure:

C

C

C

C

C

C

R R

R R

R R

Figure 1: Tic-tac-toe as a structure rewriting game.

Play Semantics. A play of a structure rewriting game starts
in a fixed initial location of the game graph and in a state
given by a starting structure. A player chooses an edge on
which she moves and a match allowed by the label of the
edge such that it can be applied, i.e. both the pre- and the
post-condition holds. The play proceeds to the location to
which the edge leads and the new state is the structure af-
ter the application of the rule on the chosen match. If in
some location and state it is not possible to apply any of the
rules on the outgoing edges, either because no match can be
found or because of the constraints, then the play ends. Pay-
off terms from that location are evaluated on the state and
determine the outcome of the game for all players.

Example 4. Let us define Tic-tac-toe in our formalism. The
starting structure has 9 elements connected by binary row
and column relations, R and C, as depicted on the right in
Figure 1. To mark the moves of the players we use unary
relations P and Q. The allowed move of the first player
is to mark any unmarked element with P and the second
player can mark with Q. Thus, there are two locations in
the game graph (representing which player’s turn it is) and
two corresponding rules, both with one element on each side
(left in Figure 1). The two diagonals can be defined by

DA(x, y) = ∃z(R(x, z) ∧C(z, y)),

DB(x, y) = ∃z(R(x, z) ∧C(y, z))
and a line of three by

L(x, y,z) = (R(x, y) ∧R(y, z)) ∨ (C(x, y) ∧C(y, z))∨
(DA(x, y) ∧DA(y, z)) ∨ (DB(x, y) ∧DB(y, z)).

Using these definitions, we specify the goal of the first player

ϕ = ∃x, y, z (P (x) ∧ P (y) ∧ P (z) ∧ L(x, y, z))

and the goal of the other player by an analogous formula ϕ′
in which P is replaced by Q. The payoff terms are χ[ϕ] −
χ[ϕ′] for the first player and χ[ϕ′]−χ[ϕ] for the other, and
to ensure that the game ends when one of the players has
won, we take as a precondition of each move the negation of
the goal formula of the other player.

The complete code for Tic-tac-toe, with the starting struc-
ture in a special syntax we use for grids with row and column
relations, is given in Figure 2. Note that we write :(ϕ) for
χ[ϕ] and e.g. Q:1 {} for an empty relation Q of arity 1.
Please refer to (Toss) for the complete input syntax and def-
initions of other, more complex games, e.g. Chess.

PLAYERS X, O
REL Row3(x, y, z) = R(x, y) and R(y, z)
REL Col3(x, y, z) = C(x, y) and C(y, z)
REL DgA(x, y) = ex z (R(x, z) and C(z, y))
REL DgB(x, y) = ex z (R(x, z) and C(y, z))
REL DgA3(x, y, z) = DgA(x, y) and DgA(y, z)
REL DgB3(x, y, z) = DgB(x, y) and DgB(y, z)
REL Conn3(x, y, z) =

Row3(x, y, z) or Col3(x, y, z) or
DgA3(x, y, z) or DgB3(x, y, z)

REL WinP()= ex x,y,z(P(x) and P(y) and P(z)
and Conn3(x, y, z))

REL WinQ()= ex x,y,z(Q(x) and Q(y) and Q(z)
and Conn3(x, y, z))

RULE Cross:
[a | - | -] -> [a | P (a) | -]
emb P, Q pre not WinQ()

RULE Circle:
[a | - | -] -> [a | Q (a) | -]
emb P, Q pre not WinP()

LOC 0 {
PLAYER X {PAYOFF :(WinP()) - :(WinQ())

MOVES [Cross -> 1] }
PLAYER O {PAYOFF :(WinQ()) - :(WinP())}

}
LOC 1 {

PLAYER X {PAYOFF :(WinP()) - :(WinQ())}
PLAYER O {PAYOFF :(WinQ()) - :(WinP())

MOVES [Circle -> 0]}
}
MODEL [| P:1 {}; Q:1 {} |] "

. . .

. . .

. . .
"

Figure 2: Tic-tac-toe in the Toss formalism.

Game Description Language
The game description language, GDL, is a variant of Datalog
used to specify games in a compact, prolog-like way. The
GDL syntax and semantics are defined in (Genesereth and
Love 2005; Love et al. 2008), we refer the reader there for
the definition and will only recapitulate some notions here.

The state of the game in GDL is defined by the set of
propositions true in that state. These propositions are repre-
sented by terms of limited height. The moves of the game,
i.e. the transition function between the states, are described
using Datalog rules — clauses define which predicates hold
in the subsequent state. In this way a transition system
is specified in a compact way. Additionally, there are 8
special relations in GDL: role, init, true, does,
next, legal, goal and terminal, which are used
to describe the game: initial state, the players, their goals,
and thus like.

We say that GDL state terms are the terms that are possi-
ble arguments of true, next and init relations in a GDL
specification, i.e. those terms which can define the state of
the game. The GDL move terms are ground instances of the
second arguments of legal and does relations, i.e. those
terms which are used to specify the moves of the players.

The complete Tic-tac-toe specification in GDL is given in
Figure 3. While games can be formalised in various ways
in both systems, Figures 2 and 3 give natural examples of a
formalisation, similar to several other games.

Notions Related to Terms
Since GDL is a term-based formalism, we will use the stan-
dard term notions, as e.g. in the preliminaries of (Comon et
al. October 2007). We understand terms as finite trees with
ordered successors and labelled by the symbols used in the
current game, with leafs possibly labelled by variables.

Substitutions. A substitution is an assignment of terms to
variables. Given a substitution σ and a term t we write σ(t)
to denote the result of applying σ to t, i.e. of replacing all
variables in t which also occur in σ by the corresponding
terms. We extend this notation to tuples in the natural way.
MGU. We say that a tuple of terms t is more general than
another tuple s of equal length, written s ≤ t, if there is a
substitution σ such that s = σ(t). Given two tuples of terms
s and twe write s=̇t to denote that these tuples unify, i.e. that
there exists a substitution σ such that σ(s) = σ(t). In such
case there exists a most general substitution of this kind, and
we denote it by MGU(s, t).
Paths. A path in a term is a sequence of pairs of func-
tion symbols and natural numbers denoting which succes-
sor to take in turn, e.g. p = (f,1)(g,2) denotes the sec-
ond child of a node labelled by g, which is the first child
of a node labelled by f . For a term t we write t ⇃p to de-
note the subterm of t at path p, and that t has a path p, i.e.
that the respective sequence of nodes exists in t with exactly
the specified labels. Using p = (f,1)(g,2) as an example,
f(g(a, b), c) ⇃p= b, but g(f(a, b), c) ⇃p is false. Similarly,
for a formula ϕ, we write ϕ(t ⇃p) to denote that t has path
p and the subterm r = t ⇃p satisfies ϕ(r). A path can be an
empty sequence ε and t ⇃ε= t for all terms t.

For any terms t, s and any path p existing in t, we write
t[p ← s] to denote the result of placing s at path p in t,
i.e. the term t′ such that t′ ⇃p= s and on all other paths q, i.e.
ones which neither are prefixes of p nor contain p as a prefix,
t′ is equal to t, i.e. t′ ⇃q= t ⇃q . We extend this notation to
sets of paths as well: t[P ← s] places s at all paths from P
in t.

Translation
In this section, we describe our main construction. Given a
GDL specification of a game G, which satisfies the restric-
tions described in the last section, we construct a Toss game
T (G) which represents exactly the same game. Moreover,
we define a bijection µ between the moves possible in G
and in T (G) in each reachable state, so that the following
correctness theorem holds.

(role x)
(role o)
(init (cell a a b))
(init (cell b a b))
(init (cell c a b))
(init (cell a b b))
(init (cell b b b))
(init (cell c b b))
(init (cell a c b))
(init (cell b c b))
(init (cell c c b))
(init (control x))
(<= (next (control ?r)) (does ?r noop))
(<= (next (cell ?x ?y ?r))

(does ?r (mark ?x ?y)))
(<= (next (cell ?x ?y ?c))

(true (cell ?x ?y ?c))
(does ?r (mark ?x1 ?y1))
(or (distinct ?x ?x1) (distinct ?y ?y1)))

(<= (legal ?r (mark ?x ?y))
(true (control ?r))
(true (cell ?x ?y b)))

(<= (legal ?r noop) (role ?r)
(not (true (control ?r))))

(<= (goal ?r 100) (conn3 ?r))
(<= (goal ?r 50) (role ?r)

(not exists_line3))
(<= (goal x 0) (conn3 o))
(<= (goal o 0) (conn3 x))
(<= terminal exists_line3)
(<= terminal (not exists_blank))
(<= exists_blank (true (cell ?x ?y b)))
(<= exists_line3 (role ?r) (conn3 ?r))
(<= (conn3 ?r) (or (col ?r) (row ?r)

(diag1 ?r) (diag2 ?r)))
(<= (row ?r)

(true (cell ?a ?y ?r)) (nextcol ?a ?b)
(true (cell ?b ?y ?r)) (nextcol ?b ?c)
(true (cell ?c ?y ?r)))

(<= (col ?r)
(true (cell ?x ?a ?r)) (nextcol ?a ?b)
(true (cell ?x ?b ?r)) (nextcol ?b ?c)
(true (cell ?x ?c ?r)))

(<= (diag1 ?r)
(true (cell ?x1 ?y1 ?r))
(nextcol ?x1 ?x2) (nextcol ?y1 ?y2)
(true (cell ?x2 ?y2 ?r))
(nextcol ?x2 ?x3) (nextcol ?y2 ?y3)
(true (cell ?x3 ?y3 ?r)))

(<= (diag2 ?r)
(true (cell ?x1 ?y5 ?r))
(nextcol ?x1 ?x2) (nextcol ?y4 ?y5)
(true (cell ?x2 ?y4 ?r))
(nextcol ?x2 ?x3) (nextcol ?y3 ?y4)
(true (cell ?x3 ?y3 ?r)))

(nextcol a b)
(nextcol b c)

Figure 3: Tic-tac-toe in the Game Description Language.

Theorem 5 (Correctness).
Let S be any state of G reached from the initial one by a
sequence of moves m1 . . .mn. We write µ(S) for the state
of T (G) reached by µ(m1) . . . µ(mn). The following con-
ditions are satisfied.

• The function µ defines a bijection between the moves pos-
sible in S and in µ(S) for each player.

• If no move is possible in S (and in µ(S)), then the payoffs
in G evaluate to the same value as those in T (G).

We will not prove this theorem here, but the construction
presented below should make it clear why the exact corre-
spondence holds. For the rest of this section let us fix the
GDL game specification G we will translate. We begin by
transformingG itself: eliminating variables clearly referring
to players (i.e. arguments of positive role atoms, first ar-
guments to positive does atoms and to legal) by substi-
tuting them by players of G (i.e. arguments of role facts),
duplicating the clauses. From this transformed specification,
we derive the elements of the Toss structure (next subsec-
tion), the relations (subsection after the next), the rewriting
rules (further subsection) and finally the move translation
function (last subsection).

Elements of the Toss Structure
By definition of GDL, the state of the game is described by
a set of propositions true in that state. Let us denote by S
the set of all GDL state terms which are true at some game
state reachable from the initial state of G.

For us, it is enough to approximate S from above. To
approximate S , we currently perform an aggregate playout,
i.e. a symbolic play in where all players take all their legal
moves in a state. Since an approximation is sufficient, we
check only the positive part of the legality condition of each
move.

To construct the elements of the structure from state
terms, and to make that structure a good representation of
the game in Toss, we first determine which state terms al-
ways have common subtrees.

Definition 6. For two terms s and twe say that a set of paths
P merges s and t if each p ∈ P exists both in s and t and
t[P ← c] = s[P ← c] for all terms c. We denote by dP(s, t)
the unique set P of paths merging s and t for which the size
of t[P ← c] is maximal and no subset of which merges s and
t. Intuitively, t[dP(s, t)← c] is the largest common subtree
of s and t, the bigger its size the more similar s and t are.

Let Nexte be the set of next clauses in G with all atoms
of does expanded (inlined) by the legal clause defini-
tions, duplicating the next clause when more than one head
of legal unifies with the does atom. Intuitively, these are
expanded forms of clauses defining game state change.

For each clause C ∈ Nexte, we select two terms sC and tC
in the following way. The term sC is simply the second part
of the head of the clause (next sC). The term tC is the
argument of true in the body of C which is most similar
to s in the sense of Definition 6, and of equally similar has
smallest dP(s, t) (if there are several, we pick one in an
arbitrary way).

We often use the word fluent for changing objects, and so
we define the set of fluent paths, Pf , in the following way.
We say that a term t is a negative true in a clause C if it is the
argument of a negative occurrence of true in C. We write
L(t) for the set of path to all constant leaves in t. The set

Pf = ⋃
C∈Nexte

dP(sC , tC) ∪ ⋃
C∈Nexte, tC negative true in C

L(tC).

Note that Pf contains all merge sets for the selected terms in
Nexte clauses, and additionally, when tC is a negative true,
we add the paths to all constant leaves in tC .
Example 7. There are three next clauses in Figure 3. C1:
(<= (next (cell ?x ?y ?c))

(true (cell ?x ?y ?c))
(does ?r (mark ?x1 ?y1))
(or (distinct ?x ?x1) (distinct ?y ?y1)))

does not lead to any fluent paths, as (cell ?x ?y ?c)
is sC1 = tC1 and thus dP(sC1 , tC1) = ∅. The clause:
(<= (next (cell ?x ?y ?r))

(does ?r (mark ?x ?y)))

expands to:
(<= (next (cell ?x ?y x))

(true (control x))
(true (cell ?x ?y b)))

(<= (next (cell ?x ?y o))
(true (control o))
(true (cell ?x ?y b)))

These generate the fluent path (cell,3). The clause:
(<= (next (control ?r)) (does ?r noop))

expands to:
(<= (next (control x))

(not (true (control x))))
(<= (next (control o))

(not (true (control o))))

These generate the fluent path (control,1) since
(control x) and (control o) are negative trues. In
the end Pf = {(cell,3), (control,1)}.

The fluent paths define the partition of GDL state terms
into elements of the Toss structures in the following way.
Definition 8. We define the element mask equivalence ∼ by:

t ∼ s ⇔ t[Pf ← c] = s[Pf ← c] for all terms c.

The set of elements A of the initial Toss structure A consists
of equivalence classes of ∼. For a ∈ Awe write ⟦a⟧ to denote
the corresponding subset of equivalent terms from S .

We define paths within mask Pm as such paths p that, for
all a ∈ A, if, for any t ∈ ⟦a⟧, t ⇃p, then for all s, t ∈ ⟦a⟧,
s ⇃p= t ⇃p. For p ∈ Pm we can therefore define the mask
subterm a ⇃mp as t ⇃p for t ∈ ⟦a⟧.
Example 9. Continuing the example of the Tic-tac-toe spec-
ification from Figure 3, we construct the set A. The terms
in S are either (cell s t p) or (control q), where s and t
range over a, b, c, p over x, o, b and q can be x or
o. Since Pf = {(cell,3), (control,1)}, we consider as

∼-equivalent all cell terms which differ only on p and all
control terms which differ on q. Thus, the set A consists
of 10 elements: the element actrl for the single equivalence
class of control terms, and 9 elements as,t for the equiv-
alence classes of (cell s t p) with fixed s and t.

A = {actrl, aa,a, aa,b, aa,c,

ab,a, ab,b, ab,c,

ac,a, ac,b, ac,c}.
Note the similarity to the starting structure in Figure 1, up to
the control element. The set of paths within masks for this
specification is Pm = {(cell,1), (cell,2)}.

Relations in the Structure
Having defined the elements A as equivalence classes of
state terms, let us now define the relations in the initial struc-
ture A.

Subterm equality relations. For all pairs of paths p, q ∈ Pm

we introduce the subterm equality relation Eqp,q:

Eqp,q(a1, a2) ⇐⇒ a1 ⇃mp = a2 ⇃mq .

Fact relations. For all relations R of G that do not (directly
or indirectly) depend on the state, and all tuples of paths
p1, . . . , pn ∈ Pm, we introduce the fact relation Rp1,...,pn :

Rp1,...,pn(a1, . . . , an) ⇐⇒ R(a1 ⇃mp1
, . . . , an ⇃mpn

) in any state.

Anchor predicates. For all paths p ∈ Pm and subterms s =
t ⇃p, t ∈ S , we introduce the anchor predicate Anchsp(a):

Anchsp(a) ⇐⇒ a ⇃mp = s.

Fluent predicates. Let S init = {s ∣ init(s) ∈ G} be the
set of state terms under init. For all paths p ∈ Pf and
subterms s = t ⇃p, t ∈ S , we introduce the fluent predicate
Flusp(a):

Flusp(a) ⇐⇒ t ⇃p = s for some t ∈ ⟦a⟧ ∩ S init.

Mask predicates. We say that a term m is a mask term if
the paths to all variables of m are contained in Pm ∪Pf and
for each p ∈ Pm ∪ Pf if p exists in m then m ⇃p is a vari-
able. We say that m masks a term t if m is a mask term
and there exists a substitution σ such that σ(m) = t. For all
mask termsm ∈ S we introduce the mask predicateMaskm.
Mask predicates are similar to the anchor predicates, but in-
stead of matching against a subterm, they match against the
mask.

Maskm(a) ⇐⇒ m masks all t ∈ ⟦a⟧.
Example 10. To list the relations derived for the Tic-tac-
toe specification, recall that Pm = {(cell,1), (cell,2)}
consists of two paths. To shorten notation, we will just use
the index i for (cell, i).

Subterm equality relations. The relationEqi,j contains all
pairs of elements for which the ith coordinate of the first one
equals the jth coordinate of the second one. For example

Eq1,1 = {(aa,a, aa,a), (aa,a, aa,b), (aa,a, aa,c),
. . .

(ac,c, ac,a), (ac,c, ac,b), (ac,c, ac,c)}

describes the identity of the first coordinate of two cells.
Fact relations. The only relation in the example specifica-

tion is nextcol and we thus get the relations nextcoli,j .
For example, the relation

nextcol2,2 = {(aa,a, aa,b), (aa,a, ab,b), (aa,a, ac,b),
. . . ,

(ac,b, aa,c), (ac,b, ab,c), (ac,b, ac,c)}
contains pairs in which the second element is in the succes-
sive row of the first one. Note that, for example, the formula
Eq1,1(x1, x2) ∧ nextcol2,2(x1, x2) specifies that x2 is di-
rectly right of x1 in the same row.

Anchor predicates. Since the terms inside cell at posi-
tions 1 and 2 range over a, b, c, we get 6 anchor pred-
icates Anchai ,Anch

b
i ,Anch

c
i for i = 1,2. They mark the

corresponding terms, e.g.

Ancha2 = {aa,a, ab,a, ac,a}
describes the bottom row.

Fluent predicates. The fluent paths Pf =
{(cell,3), (control,1)} and the terms appearing there
are b, x, o for (cell,3) and x, o for (control,1),
resulting in 5 fluent predicates. For example, Fluo

(cell,3)(a)
will hold exactly for the elements a which are marked by
the player o. In the initial structure, the only nonempty
fluent predicates are

Flub
(cell,3) = A ∖ {actrl} and Flux

(control,1) = {actrl}.
Mask predicates. For the specification we consider, there

are two mask terms: m1 = (control x) and m2 =
(cell x y z). The predicate Maskm1 = {actrl} holds
exactly for the control element, and Maskm2 = A ∖ {actrl}
contains these elements of A which are not the control ele-
ment, i.e. the board elements.

In Toss, stable relations are relations that do not change
in the course of the game, and fluents are relations that do
change. Roughly speaking, a fluent occurs in the symmet-
ric difference of the sides of a structure rewrite rule. In the
translation, the fluent predicates Flusp are the only intro-
duced fluents, i.e. these predicates will change when players
play the game and all other predicates will remain intact.

Structure Rewriting Rules
To create the structure rewriting rule for the Toss game, we
first construct two types of clauses and then transform them
into structure rewriting rules. Let (p1, . . . , pn) be the players
in G, i.e. let there be (role p1) up to (role pn) facts
in G, in this order.

Move Clauses By GDL specification, a legal joint move of
the players is a tuple of player term – move term pairs which
satisfy the legal relation. For a joint move (m1, . . . ,mn)
to be allowed, it is necessary that there is a tuple of legal
clauses (C1, ...,Cn), with head of Ci being (legal pi li),
and the legal arguments tuple being more general than the
joint move tuple, i.e. mi ≤ li for each i = 1, . . . , n.

The move transition is computed from the next clauses
whose all does relations are matched by respective joint
move tuple elements as follows.

Definition 11. Let N be a next clause. The N does facts,
d1(N), . . . , dn(N), are terms, one for each player, con-
structed from N in the following way. Let (does pi dji)
be all does facts in N .
• If there is exactly one di for player pi we set di(N) = di.
• If there is no does fact for player pi in N we set di(N)

to a fresh variable.
• If there are multiple d1i , . . . , d

k
i for player pi we compute

σ =MGU(d1i , . . . , dki) and set di(N) = σ(d1i).
We have mi ≤ di(N) for each next clause N contribut-

ing to the move transition, since otherwise the body of N
would not match the state enhanced with (does pi mi)
facts.
Example 12. In the Tic-tac-toe example, there are three
clauses where the control player is o, which after renaming
of variables look as follows.

N1 = (<= (next (control x)) (does x noop)),
N2 = (<= (next (cell ?x2 ?y2 o))

(does o (mark ?x2 ?y2))),
N3 = (<= (next (cell ?x3 ?y3 ?c))

(true (cell ?x3 ?y3 ?c))
(does o (mark ?x1 ?y1))
(or (distinct ?x3 ?x1) (distinct ?y3 ?y1))).

The does facts are, respectively,

d1(N1) = noop and d2(N1) = xf1 ,
d1(N2) = xf2 and d2(N2) = (mark x2 y2),
d1(N3) = xf3 and d2(N3) = (mark x1 y1).

Each rewrite rule of the translated game is generated from
a tuple of legal clauses C1, . . . ,Cn and a selection of next
clausesN1, . . . ,Nm, with variables renamed so that no vari-
able occurs in multiple clauses, and such that

li =̇ di(N1) =̇ . . . =̇ di(Nm)
for each player pi. We will consider all tuples C,N for
which the the above MGU exists and we will denote it by
σ
C,N . We apply σ

C,N to the clauses and we will refer to the
result simply as the legal and next clauses of the rule.

Technically, for completeness, we need to generate a rule
for a set of next clauses even if we generate a rule for its
superset, and then for correctness, we need to preclude ap-
plication of the more general rule when the more concrete
rule is applicable, adding distinct conditions to clauses
of the otherwise more general rule. In the current implemen-
tation, we only consider maximal sets of next clauses.
Example 13. Let C1 = noop and C2 = (mark x y). The
clauses N1,N2,N3 introduced above form a maximal set,

σ
C,N = {xf1 ↦ (mark x y), xf2 ↦ noop,

x2 ↦ x, y2 ↦ y, x1 ↦ x, y1 ↦ y}.
With all tuples C,N selected and the MGU σ

C,N com-
puted, we are almost ready to construct the rewriting rules.
Still, for a fixed tuple C,N , we first need to compute erasure
clauses to prevent constructing too general rules in the end.

Erasure Clauses So far, we have not accounted for the
fact that rewrite rules of Toss only affect the matched part
of the structure, while the GDL game definition explicitly
describes the construction of the whole successive structure.
We will say that a next clause is a frame clause if and only
if it contains a true relation applied to a term equal to the
next argument. Negating the frame clauses from the tu-
pleN and transforming them into erasure clauses will keep
track of the elements that possibly lose fluents and ensure
correct translation.

From the frame clauses in σ
C,N (N1), . . . , σC,N (Nm), we

select all (maximal) subsets J such that, clauses in J having
the form (<= (next si) bi), it holds

s1 =̇f . . . =̇f s∣J ∣,
i.e. the arguments of next unify. Note that we use =̇f in-
stead of the standard unification, and by that we mean that
the variables shared with the legal clauses C are treated as
constants. The reason is that these variables are not local to
the clauses and must therefore remain intact.

Intuitively, the selected sets J describe a partition of the
state terms that could possibly be copied without change by
the rule we will generate for C,N .

Let us write ρ for the f -MGU of s1, . . . , s∣J ∣. To com-
pute the bodies of the erasure clauses, we negate the disjunc-
tion of substituted bodies of the frame clauses and bring this
Boolean combination to disjunctive normal form (DNF), i.e.
we compute conjunctions e1, . . . , el such that

¬(ρ(b1) ∨ ⋅ ⋅ ⋅ ∨ ρ(b∣J ∣)) ≡ (e1 ∨ e2 . . . ∨ el).

As the head of each erasure clause we use ρ(s1) = ⋅ ⋅ ⋅ =
ρ(s∣J ∣), with the one technical change that we ignore the
fluent paths in this term. We replace these fluent paths with
BLANK and thus allow them to be deleted in case they are
not preserved by other next clauses of the rule. Let us
denote by h the term ρ(s1) after the above replacement. The
erasure clauses E

C,N (J) = {(<= h e1) . . . (<= h el)}, and
we write E

C,N for the union of all E
C,N (J), i.e. for the set

of all C,N erasure clauses.

Example 14. In our example, N3 and its counterpart for
the other player are the only frame clauses in G. After
negation, σ(N3) splits into several clauses ei. The relevant
one is (<= (next (cell ?x3 ?y3 ?c)) (?x3 =
?x) (?y3 = ?y)), i.e. (<= (next (cell ?x ?y
?c))). The resulting erasure clause is (<= (next
(cell ?x ?y BLANK))). If no other clause had the
form (<= (next (cell ?x ?y ...)) ...), this
clause would cause the erasure of any fluent at coordinates
(x, y). Other erasure clauses derived from σ(N3) turn out
to be contradictory with remaining clauses, and thus will not
contribute to any rewrite rule in the translation, due to filter-
ing described below.

Rewriting Rule Creation For each suitable tuple C,N we
have now created the unifier σ

C,N and computed the erasure
clauses E

C,N . At this point, clauses C,N are optionally di-
vided according to the player of the does relation atom in

them. To create the rules, we need to further partition the
rule clauses σ

C,N (Ci), σC,N (Ni) and E
C,N , and augment

them with further conditions. The reason is that the pre-
pared rule clauses may have different matches in different
game states, while the Toss rule has to be built from all the
rule clauses that would match when the Toss rule matches.
Therefore, we need to build a Toss rule for each subset of
rule clauses that are “selected” by some game state (i.e. are
exactly the rule clauses matching in that state), but add to it
separation conditions that prevent the Toss rule from match-
ing in game states where more rule clauses can match.

We select groups of atoms (collected from rule clauses)
that separate rule clauses, and generate a Toss rule candidate
for every partition of the groups into true and false ones: we
collect the rule clauses that agree with the given partition.
The selected atoms, some negated according to the partition,
form the separation condition.

For each candidate, we will now construct the Toss rule
in two steps. In the first step we generate the matching con-
dition: we translate the conjunction of the bodies of rule
clauses and the separation condition. This translation fol-
lows the definitions of atomic relations presented in Section ,
but we skip the full definition here.

Later we filter the rule candidates by checking for satisfia-
bility in the initial structure of the stable part of the matching
condition.

In the second step, we build a Toss rewrite rule itself.
From the heads of rule clauses of a rule candidate, we build
the R-structure: each next term, with its fluent paths re-
placed by BLANK, is an R element, and the fluent predi-
cates holding for the next state terms are the relations of
R. The L-structure and the precondition of the Toss rule is
built from the matching condition, based on elements of R.
Quantification over variables corresponding to R elements
(which are the same as L elements) is dropped, and atoms
involving only these variables and not occurring inside dis-
junctions are extracted to be relations tuples in L.

Having constructed and filtered the rewriting rule candi-
dates, we have almost completed the definition of T (G).
Payoff formulas are derived by instantiating variables stand-
ing for the goal values. The formulas defining the
terminal condition and specific goal value conditions
are translated as mentioned before, from disjunctions of
bodies of their respective clauses.

Translating Moves between Toss and GDL
To play as a GDL client, we need to translate legal moves
fromG into Toss rule embeddings for T (G), and conversely,
the rule embeddings from T (G) into moves of G.

In the incoming move case, we augment the Toss rewrite
rules with constraints provided in the incoming move, try to
embed each of the augmented rules, and return the single
rule that matches and its unique embedding. Augmenting
the rule is done in the following simple way: If the head of
a legal clause of the rule contains a variable v at path q,
a Toss variable x was derived from a game state term t such
that t ⇃p= v, and the incoming move has term s at path q,
then we add Anchsp(x) to the precondition.

To translate the outgoing move, we recall the heads of
the legal clauses of the rule that is selected, as we only
need to substitute all their variables. To eliminate a variable
v contained in the head of a legal clause of the rule, we
look at the rule embedding; if x ↦ a, x was derived from a
game state term t such that t ⇃p= v, and a ⇃mp = s, then we
substitute v by s. The move translation function µ is thus
constructed.

Game Simplification in Toss
Games automatically translated from GDL, as described
above, are verbose compared to games defined manually for
Toss. They are also inefficient, since the current solver in
Toss works fast only for sparse relations.

Both problems are remedied by joining co-occurring re-
lations. Relations which always occur together in a con-
junction are replaced by their join when they are over the
same tuple. Analogically, we eliminate pairs of atoms when
the arguments of one relation are reversed arguments of the
other.

In an additional simplification, we remove an atom of a
stable relation which is included in, or which includes, an-
other relation, when an atom of the other relation already
states a stronger fact. For example, if Positive ⊆ Number,
then Positive(x)∧Number(x) simplifies to Positive(x),
and Positive(x) ∨Number(x) simplifies to Number(x).

The above simplifications can be applied to any Toss defi-
nition. We perform one more simplification targeted specif-
ically at translated games: We eliminate Eqp,q(x, y) atoms
when we detect that Eqp,q-equivalence of x and y can be
deduced from the remaining parts of the formula.

The described simplifications are stated in terms of ma-
nipulating formulas; besides formulas, we also apply analo-
gous simplifications to the structures of the Toss game: the
initial game state structure, and each L and R rule structures.

Experimental Results
The presented translation was implemented in (Toss), an
open-source program with various logic functions as well
as the presented game model and a GUI for the players.

After the simplification step described above, the trans-
lated games were very similar to the ones we defined man-
ually in Toss. As far as a game could be translated (see the
restrictions below), the resulting specification was almost as
good for playing as the manual one. In Table 1 we show
the results of playing a game translated from GDL against a
manually specified one — the differences are negligible.

Manual Wins Translated Wins Tie
Breakthrough 55% 45% 0%

Connect5 0% 0% 100%

Table 1: Manual against Translated on 2 sample games.

Discussion and Perspectives
The major restriction of the proposed translation scheme is
its notion of fluent paths. It requires that the next clauses

build terms locally, referring among others to a similar orig-
inal true term, instead of propagating changes only from
different terms. Consider an example from a specification of
the game Connect4:
(<= (next (cell ?c ?y2 b)) (succ ?y1 ?y2)
(true (cell ?c ?y1 b)) (distinct ?y1 6))

Here, without further modifications, (cell,2) is incorrectly
detected as a fluent path. A sufficient condition to meet this
restriction is that fluent paths dP(sC , tC) point only to con-
stant terms in sC . A possible workaround for games violat-
ing this condition is guessing that the offending clause is a
frame clause and ignoring it, as is the case above.

Even if a game meets the major restriction above, the
translation may not handle it or may take a long time. The
reason is that it does not use Toss defined relations: it either
translates GDL definition relations extensively as stable rela-
tions in the game state structure, or it expands (inlines) them
before translation. To lift this restriction, we need to use
definitions in the translation in an efficient way and translate
relations depending on game state as defined relations.

Finally, the number of elements in the resulting game state
structure can be prohibitive. It is a consequence of mapping
state terms to Toss elements in such way that all fluents are
predicates. Currently, an element a is identified with a mask
m and a ground substitution for its Pm paths. If the number
of elements falling under a mask m is too large, we would
instead like to identify elements by the mask plus ground
substitution of a subset of its Pm paths (for subsets that to-
gether cover all its Pm paths). Fluents corresponding to Pf

paths in m would then be of arity equal to the number of
such subsets. We would then define ⟦⋅⟧ ∶ A→ 2S in terms of
masks and subsets of Pm, which is closer to the implemen-
tation, rather than in terms of Pf as is done in this work.

References
Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacque-
mard, F.; Lugiez, D.; Tison, S.; and Tommasi, M. October
2007. Tree automata techniques and applications.
Genesereth, M. R., and Love, N. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2):62–72.
Grädel, E., and Gurevich, Y. 1998. Metafinite model theory.
Information and Computation 140:26–81.
Grädel, E. 2007. Finite model theory and descriptive
complexity. In Finite Model Theory and Its Applications.
Springer. 125–230.
Kaiser, L., and Stafiniak, L. 2011. First-order logic with
counting for general game playing. In Proc. of AAAI’11.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game description
language specification. Technical report.
Rajlich, V. 1973. Relational structures and dynamics of
certain discrete systems. In Proc. of MFCS’73, 285–292.
Toss. http://toss.sourceforge.net.

