First-Order Logic with Counting for General Game Playing

Lukasz Kaiser
CNRS & LIAFA
Paris

Abstract

General Game Players (GGPs) are programs which can play
an arbitrary game given only its rules and the Game Descrip-
tion Language (GDL) is a variant of Datalog used in GGP
competitions to specify the rules. GDL inherits from Data-
log the use of Horn clauses as rules and recursion, but it too
requires stratification and does not allow to use quantifiers.
We present an alternative formalism for game descriptions
which is based on first-order logic (FO). States of the game
are represented by relational structures, legal moves by struc-
ture rewriting rules guarded by FO formulas, and the goals
of the players by formulas which extend FO with counting.
The advantage of our formalism comes from more explicit
state representation and from the use of quantifiers in for-
mulas. We show how to exploit existential quantification in
players’ goals to generate heuristics for evaluating positions
in the game. The derived heuristics are good enough for a
basic alpha-beta agent to win against state of the art GGP.

Introduction

The goal of General Game Playing (GGP) is to construct a
program able to play an arbitrary game on an expert level
without additional information about the game. Currently,
the focus in GGP is put on playing non-stochastic games
with perfect information, such as Chess or Checkers, while
extensions to games with imperfect information and stochas-
tic behavior, such as Poker, have been developed only re-
cently (Thielscher 2010). Even for perfect-information zero-
sum games, the task of a general game player is a formidable
one, as evidenced by the introduction of various new tech-
niques in each annual AAAI GGP Competition.

During the GGP competition, games are specified in the
Game Description Language (GDL), which is a variant of
Datalog, cf. (Genesereth and Love 2005). A successful
GGP agent must reason about the rules of the game and ex-
tract from them game-specific knowledge, such as heuristic
functions used to evaluate positions during the game. To
facilitate the creation of good general players, GDL was
designed as a high-level, declarative language. Still, in re-
cent years (see GGP Competition results 07-10") the players
which only derive evaluation functions based on reasoning,
cf. (Clune 2008), have often lost against Monte-Carlo based
players, which rely far less on symbolic deduction and more

'cadia.ru.is/wiki/public:cadiaplayer:main

Fukasz Stafiniak

Institute of Computer Science
University of Wroctaw

on optimized tree-searching with Monte-Carlo simulations
for evaluating positions (Finnsson and Bjornsson 2008).

In this paper, we present another formalism for game
description, which is even higher-level and more declara-
tive than GDL, and we exploit it to beat a state of the art
GGP player using only minimax search with logically de-
rived heuristics for position evaluation. The introduced de-
scription language also allows to specify games in a more
compact and, in our opinion, more natural way than GDL.
The state of a game in our formalism is represented by a
relational structure and legal moves are given by structure
rewriting rules guarded by formulas of first-order logic (FO).
The payoffs the players receive at the end are described by
counting terms, which extend FO in a way similar to the one
presented in (Gréddel and Gurevich 1998). These terms can
be manipulated easier than GDL descriptions of payoffs.

From the counting terms in the payoffs and the constraints
of the moves we derive heuristics for evaluating game posi-
tions. These heuristics are good enough for a basic game
player, Toss, which only performs a minimax search with
alpha-beta pruning, to beat a state of the art GGP agent,
Fluxplayer. Fluxplayer has ranked among the top 5 in each
GGP competition in the last 5 years and was the only one
of the top players we could access online for testing. While
Toss does not win in all the games we tested, it generally
plays on par with Fluxplayer in games not well-suited for
simple minimax (e.g. in Connect5) and decisively outper-
forms Fluxplayer in other games (e.g. in Breakthrough).

Relational Structure Rewriting

The state of the game is represented in our formalism by a
finite relational structure, i.e. a labeled directed hypergraph.
A relational structure 2[= (A, Ry, ..., R) is composed of
a universe A (denoted by the same letter, no fraktur) and a
number of relations. We write r; for the arity of R;, so R; C
A"i. The signature of 2 is the set of symbols {R1, ..., Ry }.

The moves of the players are described by structure
rewriting rules, a generalized form of term and graph rewrit-
ing. Structure rewriting has been introduced in (Rajlich
1973), for games in (Kaiser 2009), and is most recognized
in graph rewriting and software engineering communities,
where it is regarded as easy to understand and verify.

In our setting, a rule £ —4 R consists of two finite rela-
tional structures, £ and R, over the same signature, and of

Rewriting Rule: ~ @%@

Figure 1: Rewriting rule and its application to a structure.

a partial function s : YR — £ specifying which elements of
£ will be substituted by which elements of $R. With each
rule, we will also associate a set of relations symbols 7, to
be embedded exactly, as described below.

Definition 1. Let %[and B be two relational structures over
the same signature. A function f : A — B is a 7,-
embedding if f is injective, for each R; € 7, it holds that

(a1,...,a,,) € R* & (f(ar),..., f(as,)) € R,
and for R; ¢ 7, it holds that

(a1,...,a.;) € R?-l = (f(a1),..., f(ar;)) € R;-B.

A To-match of the rule £ — R in another structure 2(is a
To-embedding o : £ — 2.

Definition 2. The result of an application of £ —; R
to 2 on the match o, denoted A[L —, R/0], is a rela-
tional structure 8 with universe (A\ o (L))UR, and relations
given as follows. A tuple (by,...,b,,) is in the new relation
RP if and only if either it is in the relation in R already,
(b1,...,b.,) € RM, or there exists a tuple in the previous
structure, (aq,...,a,;,) € R?‘, such that for each j either
a; = bj ora; = o(s(b;)), i.e. either the element was there
before or it was matched and b; is the replacement as speci-
fied by the rule. Moreover, if R; € 7, then we require in the
second case that at least one b; was already in the original
structure, i.e. b; = a; forsome [€ {1,...,r;}.

To understand this definition it is best to consider an ex-
ample, and one in which elements are both added and copied
is presented in Figure 1. The labels a and b on the right-hand
side of the rewriting rule depict the partial function s.

Logic and Constraints

The logic we use for specifying properties of states is an ex-
tension of first-order logic with real-valued terms and count-
ing operators, cf. (Griddel and Gurevich 1998).

Syntax. We use first-order variables 1, 2, . . . ranging over
elements of the structure, and we define formulas ¢ and real-
valued terms p by the following grammar (n, m € N).

@ = Ri(x1,....¢n) |zi=x;|p<p

=@ leVeloAe|3zip| Vi,
n
p = E|p+p|p-p|x[eﬁ}\zp-
Z|p

Semantics. Most of the above operators are defined in the
well known way, e.g. p+ p is the sum and p- p the product of
two real-valued terms, and 3z ¢(x) means that there exists
an element a in the universe such that ¢(a) holds. Among
less known operators, the term x[¢] denotes the character-
istic function of ¢, i.e. the real-valued term which is 1 for
all assignments for which ¢ holds and O for all other. The
term » -, p denotes the sum of the values of p(Z) for all as-

signments of elements of the structure to Z for which ¢ (T)
holds. Note that these terms can have free variables, e.g. the
set of free variables of) *- p is the union of free variables

of ¢ and free variables of p, minus the set {Z}.

The logic defined above is used in structure rewriting rules
in two ways. First, it is possible to define a new relation
R(T) using a formula ¢(Z) with free variables contained
in . Defined relations can be used on left-hand sides of
structure rewriting rules, but are not allowed on right-hand
sides. The second way is to add constraints to a rule. A rule
£ —, R can be constrained using two sentences (i.e. formu-
las without free variables): ¢p.e and ppost. In e We allow
additional constants [for each [€ £ and in s Special
constants for each € R can be used. A rule £ — R with
such constraints can be applied on a match ¢ in 2 only if the
following holds: At the beginning, the formula ¢y, must
hold in 2(with the constants [interpreted as o (1), and, after
the rule is applied, the formula ¢p,os; must hold in the re-
sulting structure with each r interpreted as the newly added
element r (cf. Definition 2).

Structure Rewriting Games

One can in principle describe a game simply by providing a
set of allowed moves for each player. Still, in many cases it
is natural to specify the control flow directly. For this reason,
we define games as labeled graphs as follows.

Definition 3. A structure rewriting game with k players is a
finite directed graph in which each vertex, called location, is
assigned a player from {1,...,k} and k real-valued payoff
terms, one for each player. Each edge of the graph represents
a possible move and is labeled by a tuple

(’S _>S m7 Te, (Pprev L)Dpost)a

which specifies the rewriting rule to be used with relations to
be embedded and a pre- and post-condition. Multiple edges
with different labels are possible between two locations.

Play Semantics. A play of a structure rewriting game starts
in a fixed initial location of the game graph and in a state
given by a starting structure. The moving player chooses an
edge and a match allowed by the label of the edge such that
it can be applied, i.e. both the pre- and the post-condition
holds. The play proceeds to the location to which the edge
leads and the new state is the structure after the application
of the rule on the chosen match. If in some location and
state it is not possible to apply any of the rules on the outgo-
ing edges, either because no match can be found or because
of the constraints, then the play ends. Payoff terms from
that location are evaluated on the state and determine the
outcome of the game for all players.

Game Graph: Starting Structure: WO
c e e

O-®| |O-@ QHO~
re= (P} \) 7= 1(P Q) N

Figure 2: Tic-tac-toe as a structure rewriting game.

Example 4. Let us define Tic-tac-toe in our formalism. The
starting structure has 9 elements connected by binary row
and column relations, R and C, as depicted on the right in
Figure 2. To mark the moves of the players we use unary
relations P and (), representing crosses and circles. The
allowed move of the first player is to mark any unmarked el-
ement with P and the second player can mark with (). Thus,
there are two locations (gray) in the game graph, represent-
ing which player’s turn it is, and two corresponding rules,
both with one element on each side (left in Figure 2).

Observe that in both rules we require P and @ to be em-
bedded. Note (see Definitions 1 and 2) that this ensures
that no player can make a move where someone has already
moved before. The two diagonals can be defined by

Da(z,y) = F2(R(x, 2) N C(z,y)),
Dp(z,y) = 3z(R(z,2) A C(y, 2))
and a line of three by
L(z,y,2) = (R(z,y) A R(y, 2)) V (C(z,y) AN C(y,2))V
(Da(z,y) A Daly,z)) V (Dp(z,y) A Dp(y, 2)).
Using these definitions, we specify the goal of the first player
p=13x,y,2 (P(x) A P(y) A P(z) A L(;E,y,z))

and the goal of the other player by an analogous formula ¢’
in which P is replaced by Q. The payoff terms are x[p] —
X[¢'] for the first player and x[¢’] — x[] for the other, and
to ensure that the game ends when one of the players has
won, we take as a precondition of each move the negation of
the goal formula of the other player.

The complete code for Tic-tac-toe, with the starting struc-
ture in a special syntax we use for grids with row and column
relations, is given in Figure 3. Note that we write : () for
Xx|p] and e.g. 0:1 {} for an empty relation @ of arity 1.
Please refer to (Toss) for the complete input syntax and def-
initions of other, more complex games, e.g. Chess.

Type Normal Form

To derive evaluation heuristics from payoff terms, we first
have to introduce a normal form of formulas which we ex-
ploit later in the construction. This normal form is in a
sense a converse to the prenex normal form (PNF), because
the quantifiers are pushed as deep inside the formula as
possible. A very similar normal form has been used re-
cently in a different context (Ganzow and Kaiser 2010).
For a set of formulas ® let us denote by B*(®) all posi-
tive Boolean combinations of formulas from ®, i.e. define
BT (®) = & | BT (®) VBT (®)|BH(®)ABT(D).

PLAYERS X, O

REL DgA(x, y) = ex z (R(x, z) and C(z, vy))
REL DgB(x, y) = ex z (R(x, z) and C(y, z))
REL Row3(x, vy, z) = R(x, y) and R(y, z)
REL Col3(x, vy, z) = C(x, y) and C(y, z)
REL DgA3(x, y, z) = DgA(x, y) and DgA(y, z)
REL DgB3(x, vy, z) = DgB(x, y) and DgB(y, 2z)
REL Conn3(x, vy, z) =
Row3 (x, y, z) or Col3(x, y, z) or
DgA3(x, y, z) or DgB3(x, vy, z)
REL WinP ()= ex x,vy,z(P(x) and P(y) and P (z)
and Conn3(x, v, z))
REL WinQ ()= ex x,y,z(Q(x) and Q(y) and Q(z)
and Conn3(x, vy, z))

RULE Cross:

fa | =1 =-1->1Tal P(a) | -1

emb P, Q pre not WinQ ()
RULE Circle:
la | — | -1 ->1Tla | Q(a) | -1
emb P, Q pre not WinP ()
LOC 0 { PLAYER X
PAYOFF {
X: :(WinP ()) - :(WinQ());
O: :(WinQ()) - ::(WinP())
}
MOVES [Cross —-> 1] }
LOC 1 { PLAYER O
PAYOFF {
X: :(WinP ()) — :(WinQ<());
O: :(WinQ()) - :(WinP())
}
MOVES [Circle -> 0] }
MODEL [| P:1 {}; Q:1 {}y | 1 "

Figure 3: Tic-tac-toe in our game description formalism.

Definition S. A formula is in TNF if and only if it is a posi-
tive Boolean combination of formulas of the following form

T=Ri(@) | ~Ri(@) | v =y |2 Fy | BT ()| VaBT (1)

satisfying the following crucial constraint: in 3z B* ({7;})
and Vx BY ({7;}) the free variables of each 7; appearing in
the Boolean combination must contain x.

We claim that for each formula ¢ there exists an equiv-
alent formula ¢ in TNF, and the procedure TNF(y) com-
putes ¢/ given ¢ in negation normal form. Note that it uses
sub-procedures DNF and CNF which, given a Boolean com-
bination of formulas, convert it to disjunctive or respectively
conjunctive normal form.

As an example, consider ¢ = Jz(P(z) A(Q(y) VR(x)));
This formula is not in TNF as Q(y) appears under 3z, and

TNF () = (Q(y) A 3zP(z)) Vv Jz(P(z) A R(z)).

Procedure TNF (¢)

case o is a literal return ;
case p = 1 V 9 return TNF(¢1) V TNF(p2);
case ¢ = 1 A @2 return TNF (1) A TNF(p2);
case ¢ = Jz 1)

Let DNF(TNF(¢)) = V/;(A; ¢5)

and F; = {j | x € FreeVar(y})};

return \/; (/\ngi b5 A 3e(Njer, T/J;))’
case ¢ = Vz 4

Let CNF(TNF(¢)) = A, (V; ¥5)

and F; = {j | « € FreeVar(y})};

return /\; <\/j¢F,L- w; \ vx(\/jeFi 1/’;))’

Theorem 6. TNF (i) is equivalent to ¢ and in TNF.

The proof of the above theorem is a simple argument by

induction on the structure of the formula, so we omit it here.
Instead, let us give an example which explains why it is use-
ful to compute TNF for the goal formulas.
Example 7. As already defined above, the payoff in Tic-tac-
toe is given by 3z, y, 2(P(z) AP(y)AP(2)AL(x,y, 2)). To
simplify this example, let us consider the payoff given only
by row and column triples, i.e.

e =3z,y, z(P(x) A P(y) A P(z)A

((R(‘Ta y) A R(y7 Z)) \ (O(‘T7 y) A C(y7 Z))))

This formula is not in TNF and the DNF of the quantified
part has the form 1 V @5, where

1= P(z) AN P(y) A P(2) A R(z,y) A R(y, 2),
s = P(x) A P(y) A P(2) AC(2,y) AC(y, 2).

The procedure TNF must now choose the variable to first
split on (this is discussed in the next section) and pushes the
quantifiers inside, resulting in TNF(p) = 11 V 1o with

¢1 = 32(P() A3y (P)AR(,y) A3=(P(2) AR (y. 2)))).

Vo = Jz(P(2) A3y (P(y)AC (2, y)AJz(P(2) AC(y, 2)))).

In spirit, the TNF formula is thus more “step-by-step” than
the goal formula we started with, and we exploit this to gen-
erate heuristics for evaluating positions below.

Heuristics from Existential Formulas

In this section, we present one method to generate a heuris-
tic from an existential goal formula. As a first important
step, we divide all relations appearing in the signature in our
game into two sorts, fluents and stable relations. A relation
is called stable if it is not changed by any of the structure
rewriting rules which appear as possible moves, all other
relations are fluent. We detect stable relations by a simple
syntactic analysis of structure rewriting rules, i.e. we check
which relations from the left-hand side remain unchanged on
the right-hand side of the rule. It is a big advantage of our

formalism in comparison to GDL that stable relations (such
as row and column relations used to represent the board) can
so easily be separated from the fluents.

After detecting the fluents, our first step in generating the
heuristic is to compute the TNF of the goal formula. As
mentioned in the example above, there is certain freedom
in the TNF procedure as to which quantified variable is to
be resolved first. We use fluents to decide this — a vari-
able which appears in a fluent will be resolved before all
other variables which do not appear in any fluent literal (we
choose arbitrarily in the remaining cases).

After the TNF has been computed, we change each se-
quence of existential quantifiers over conjunctions into a
sum, counting how many steps towards satisfying the whole
conjunction have been made. Let us fix a factor o < 1 which
we will discuss later. Our algorithm then changes a formula
in the following way.

1 (01 (1) A3wa (V1 (w2, £1) A - AT, (I (2, T)) -+)
$

Soo(a D (@ (et Y 1))

z1|91(z1) z2|V2(z2,71) T |9n (Tn,T7)

The sub-formulas ¥;(z;,) are in this case conjunctions
of literals or formulas which contain universal quantifiers.
The factor « defines how much more making each next step
is valued over the previous one. When a formula contains
disjunctions, we use the above schema recursively and sum
the terms generated for each disjunct.

To compute a heuristic for evaluating positions from a
payoff term, which is a real-valued expression in the logic
defined above, we substitute all characteristic functions, i.e.
expressions of the form x[p], by the sums generated for o
as described above.

Example 8. Consider the TNF of the simplified goal for-
mula for Tic-tac-toe presented in the previous example and
leta = %. Since the TNF of the goal formula for one player
has the form 11 V 12, we generate the following sums:

s= Y G+ X Ggr X)

x| P(z) y|P(y)AR(,y) z|P(2)AR(y,2)

1 1
2= (5+ > G+ > 1)
z|P(x) yIP(y)NC (2,y) z|P(2)AC(y,2)
Since the payoff is defined by x[¢] — x[¢’], where ¢’ is the

goal formula for the other player, i.e. with () in place of P,
the total generated heuristic has the form

/ /
S1 + S92 — 87 — So,

where s} and s/, are as s; and s but with P replaced by Q.

Finding Existential Descriptions

The method described above is effective if the TNF of the
goal formulas has a rich structure of existential quantifiers.
But this is not always the case, e.g. in Breakthrough the goal
formula for white has the form 3z (W (z) A =3y C(x,y)),
because —Jy C'(x, y) describes the last row which the player

is supposed to reach. The general question which presents
itself in this case is how, given an arbitrary relation R(T)
(as the last row above), can one construct an existential for-
mula describing this relation. In this section, we present one
method which turned out to yield useful formulas at least for
common board games.

First of all, let us remark that the construction we present
will be done only for relations defined by formulas which do
not contain fluents. Thus, we can assume that the relation
does not change during the game and we use the starting
structure in the construction of the existential formula.

Our construction keeps a set C' of conjunctions of stable
literals. We say that a subset {¢1,...,¢n} C C describes a
relation Q(Z) in 2 if and only if) is equivalent in 2 to the
existentially quantified disjunction of ¢;’s, i.e. if

AL QT %\/(ami),

where y; are all free variables of ¢; except for 7.

Our procedure extends the conjunctions from C' with new
literals until a subset which describes () is found. These ex-
tensions can in principle be done in any order, but to obtain
compact descriptions in reasonable time we perform them
in a greedy fashion. The conjunctions are ordered by their
hit-rank, defined as

. _ H{z e A ETye()}
hit-ranke o) (@) = Z28E Tp@)]

where again § = FreeVar(y) \ Z. Intuitively, the hit-rank
is the ratio of the tuples from () which satisfy (existentially
quantified) ¢ to the number of all such tuples. Thus, the
hit-rank is 1 if ¢ describes () and we set the hit-rank to 0 if
¢ is not satisfiable in 2. We define the ranky o (¢, R(7))
as the maximum of the hit-ranky (¢ A R(7y)) and the
hit-ranky g (¢ A—R(y)). The complete procedure is sum-
marized below.

Procedure ExistentialDescription (2, Q)
C+—{T}
while no subset of C describes Q(T) in 2 do
for a stable relation R(Y), conjunction ¢ € C
with maximal ranky g (¢, R(y)) do

C+— (C\{p}) U{p AR(®@), p A—R(Y)}

end
end

Since it is not always possible to find an existential de-
scription of a relation, let us remark that we stop the pro-
cedure if no description with a fixed number of literals is
found. We also use a tree-like data structure for C' to check
the existence of a describing subset efficiently.

Example 9. As mentioned before, the last row on the board
is defined by the relation Q(z) = -3y C(z,y). Assume
that we search for an existential description of this relation
on a board with only the binary row and column relations
(R and C) being stable, as in Figure 2. Since adding a row
literal will not change the hit-rank, our construction will be

adding column literals one after another and will finally ar-
rive, on a 3 X 3 board, at the following existential descrip-
tion: Jy1,y2(C(y1,y2) A C(y2,x)). Using such formula,
the heuristic constructed in the previous section can count
the number of steps needed to reach the last row for each
pawn, which is important e.g. in Breakthrough.

Alternative Heuristics with Rule Conditions

The algorithm presented above is only one method to derive
heuristics, and it uses only the payoff terms. In this section
we present an alternative method, which is simpler and uses
also the rewriting rules and their constraints. This simpler
technique yields good heuristics only for games in which
moves are monotone and relatively free, e.g. for Connect5.
Existential formulas are again the preferred input for the
procedure, but this time we put them in prenex normal form
at the start. As before, all universally quantified formulas are
either treated as atomic relations or expanded, as discussed
above. The Boolean combination under the existential quan-
tifiers is then put in DNF and, in each conjunction in the
DNF, we separate fluents from stable relations. After such
preprocessing, the formula has the following form:

3z ((91(T) AY1(@) V - V (00 (T) A n(T))),

where each 9;(Z) is a conjunction of fluents and each v, ()
is a conjunction of stable literals.

To construct the heuristic, we will retain the stable sub-
formulas 1, (Z) but change the fluent ones ¥,(Z) from con-
junctions to sums. Formally, if ¢;(Z) = F1(Z) A+ -+ A F(T)
then we define s;(Z) = x[F1(Z)] + - - - + x[Fx(T)], and let
0;(T) = F1(T) V -+ V F(T) be a formula checking if the
sum s;(Z) > 0. The guard for our heuristic is defined as

V(@) = (1) V- V(@) A (01@) V-V 0u(T))
and the heuristic with parameter m by

Z (51(T) —|—~--+sn(f))m

Z|v(T) Amove(T)

The additional formula move(Z) is used to guarantee that
at each element matched to one of the variables 7 it is still
possible to make a move. This is done by converting the
rewrite rule into a formula with free variables correspond-
ing to the elements of the left-hand side structure, removing
all the fluents F; from above if these appear negated, and
quantifying existentially if a new variable (not in) is cre-
ated in the process. The following example shows how the
procedure is applied for Tic-tac-toe.

Example 10. For Tic-tac-toe simplified as before (no diag-
onals), the goal formula in PNF and DNF reads:

oy, z ((P(x) A P(y) A P(2) A R(z,y) A R(y, 2))
V(P(x) A P(y) A P(z) A Cla,y) A Cly, 2))).
The resulting guard is thus, after simplification,

vz, y,2) = ((R(z,y) A R(y,2)) V (Clz,y) A Cly, 2)))
A(P(z) V P(y) V P(z)).

Since the structure rewriting rule for the move has only one
element, say u, on its left-hand side, and 7, = {P,Q} for
this rule, the formula for the left-hand side reads [(u) =
—P(u) A =Q(u). Because P appears as a fluent in v we
remove all occurrences of =P from [and are then left with
move(u) = —Q(u). Since we require that a move is possible
from all variables, the derived heuristic for one player with
power 4 has the form

h = Y (P@)] + x[Py)] + x[P())*

z,y,2 | v(2,9,2) A —Q(x) A =Q(y) A —Q(z)

Since the payoff expression is x[¢] — x[¢'], where ¢’ is the
goal formula for the other player, we use h — h’ as the final
heuristic to evaluate positions.

Experimental Results

The described algorithms are a part of (Toss), an open-
source program implementing various logic functions as
well as the presented game model and a GUI for the players.
Toss contains an efficient implementation of CNF and DNF
conversions and formula simplifications (interfacing a SAT
solver, MiniSAT), and a model-checker for FO, which made
it a good platform for our purpose.

We defined several board games in our formalism and cre-
ated move translation scripts to play them against a GGP
agent, Fluxplayer (Schiffel and Thielscher 2007). The tests
were performed on the Dresden GGP Server?.

We played 4 different games, 20 plays each, to illustrate
how our heuristics work in games of various kinds. In these
plays, Toss uses a basic constant-depth alpha-beta search al-
gorithm. For the results in Table 1, Toss was using heuristics
generated with parameter o« = i or m = 4 in the alterna-
tive case, and the choice of the heuristic was made based on

branching — the alternative one was used for ConnectS5.

Toss Wins | Fluxplayer Wins Tie
Breakthrough 95% 5% 0%
Connect4 20% 75% 5%
Connect5 0% 0% 100%
Pawn Whopping 50% 50% 0%
Total 41.25% 32.5% 26.25%

Table 1: Toss against Fluxplayer on 4 sample games.

The final total score was 4350 vs. 3650 for Toss, but, as
you can see, it strongly depends on the game played. One
important problem in games with low branching, i.e. both
in Connect4 and Pawn Whopping, is that all leaves in the
search tree of the basic alpha-beta have the same height.
Fluxplayer uses a more adaptive search algorithm, and in
tests against Toss with a variable-depth search, Toss did not
lose any game and the final score was 5350 vs. 2650.

Toss svn release 1315 was used to play on euklid.inf.
tu-dresden.de:8180/ggpserver/. The plays are in 4
tournaments, one for each tested game, and can be viewed on-
line after selecting Toss under Players. The variable-depth
search plays are presented in 4 additional tournaments, with “vari-
able_depth” suffix, and this algorithm is used in Toss release 0.6.

Perspectives

We presented a formalism for describing perfect informa-
tion games and an algorithm to derive from this formalism
heuristics for evaluating positions in the game. These are
good enough to win against a state of the art GGP player
and thus prove the utility of the introduced formalism.

The use of counting FO formulas for goals and move con-
straints allows to derive many more heuristics than the two
we presented. Probably, a weighted combination of heuris-
tics constructed in various ways from both the payoffs and
the constraints would outperform any single one by far. One
of the problems with this approach is the necessity to auto-
matically learn the weights, which on the one hand requires
a lot of time, but on the other hand promises an agent which
improves with each play. One technique which we would
like to try to apply in this context is boosting, as in (Freund
and Schapire 1995), with heuristics used as experts.

Since it is very easy to construct new interesting patterns
when operating on formulas, we also plan to explore how
such formulas can be used to prune the search space. We
imagine for example a formula which dictates the use of
strategies which only place a new stone in a distance of at
most 3 from some already present one. Such pruning may
not be optimal in itself, but it may be the only way to perform
a deeper search in games with large branching, and maybe
it can be combined with some form of broad shallow search.
Generally, the use of counting FO formulas facilitates many
tasks and opens many new possibilities for GGP.

References

Clune, J. E. 2008. Heuristic Evaluation Functions for Gen-
eral Game Playing. Dissertation, UCLA.

Finnsson, H., and Bjornsson, Y. 2008. Simulation-based
approach to general game playing. In AAAI’08. AAAI Press.
Freund, Y., and Schapire, R. E. 1995. A decision-theoretic
generalization of on-line learning and an application to
boosting. In EuroCOLT’95, volume 904 of LNCS, 23-37.

Ganzow, T., and Kaiser, L. 2010. New algorithm for
weak monadic second-order logic on inductive structures.
In CSL’10, volume 6247 of LNCS, 366-380. Springer.
Genesereth, M. R., and Love, N. 2005. General game
playing: Overview of the AAAI competition. Al Magazine
26(2):62-72.

Gridel, E., and Gurevich, Y. 1998. Metafinite model theory.
Information and Computation 140:26-81.

Kaiser, £.. 2009. Synthesis for structure rewriting systems.
In MFCS 09, volume 5734 of LNCS, 415-427. Springer.
Rajlich, V. 1973. Relational structures and dynamics of
certain discrete systems. In MFCS’73, 285-292.

Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In AAAI'07, 1191-1196. AAAI
Press.

Thielscher, M. 2010. A general game description language
for incomplete information games. In AAAI’10, 994-999.
AAAI Press.

Toss. http://toss.sourceforge.net.

